Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions first-order-odes/separable.md
Original file line number Diff line number Diff line change
Expand Up @@ -175,3 +175,95 @@ t &= 2 \left(\frac{1}{0.01}\right)^2 \sqrt{\frac{2}{2 \cdot 9.8}} = 6400
This time is in seconds because all units are SI, so the tank drains in about
1.8 hours.
````

## Skill builder problems

Solve the following:

1. $y'+(x+2)y^2 = 0, \quad y(1) = 1$

```{solution}
Separate and integrate:

\begin{align}
\dd{}{y}{x} &= -(x+2)y^2 \\
\int\frac{\d{y}}{y^2} &= -\int (x+2) \d{x} \\
-\frac{1}{y} &= -\left(\frac{x^2}{2} + 2x\right) + c
\end{align}

Apply initial condition $y(1) = 1$:

\begin{equation}
-1 = -\left(\frac{1}{2} + 2 \right) + c
\end{equation}

so $c = 3/2$. Hence,

\begin{equation}
y = \frac{2}{x^2+4x-3}
\end{equation}
```

2. $yy'+4x = 0, \quad y(0) = 3$

```{solution}
Separate and integrate:

\begin{align}
y \frac{dy}{dx} &= -4x \\
\int y \d{y} &= \int-4x \d{x} \\
-\frac{y^2}{2} &= -2x^2 + c \\
\end{align}

Apply initial condition $y(0) = 3$:

\begin{equation}
-\frac{9}{2} = c
\end{equation}

so

\begin{align}
y^2 &= 9-4x^2 \\
y &= \pm \sqrt{9-4x^2}
\end{align}

The negative root does not satisfy the initial condition, so choose the
positive root:

\begin{equation}
y = \sqrt{9-4x^2}
\end{equation}
```

3. $\displaystyle y' = \frac{x-1}{y}e^{-y^2}, \quad y(0) = 1$

```{solution}
Separate and integrate:

\begin{align}
\int y e^{y^2} \d{y} &= \int (x-1) \d{x} \\
\frac{1}{2} e^{y^2} &= \frac{x^2}{2} - x + c
\end{align}

Apply initial condition $y(0) = 1$:

\begin{equation}
\frac{1}{2} e = c
\end{equation}

Hence,

\begin{align}
e^{y^2} &= x^2 - 2x + e \\
y^2 &= \ln(x^2 - 2x + e) \\
y &= \pm \sqrt{\ln(x^2 - 2x + e)}
\end{align}

The negative root again does not meet the initial condition, so choose the
positive one:

\begin{equation}
y = \sqrt{\ln(x^2 - 2x + e)}
\end{equation}
```