Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Feb 3, 2026

🌟 What is the purpose of this PR?

Introduce a MIR execution-analysis pass that splits basic blocks into contiguous regions with uniform target support, returning per-block target affinities for downstream scheduling.

🔍 What does this change?

  • Add a basic-block splitting pass that remaps block IDs, inserts Goto chains between split regions, and returns target affinities.
  • Add unit and snapshot coverage for splitting behavior and cost remapping.
  • Extend execution-analysis data structures to support target bitsets/arrays and cost remapping.

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

🛡 What tests cover this?

  • New unit tests and snapshot coverage for the splitting pass.

❓ How to test this?

  • Run the hashql-mir test suite that includes execution spli

@vercel
Copy link

vercel bot commented Feb 3, 2026

The latest updates on your projects. Learn more about Vercel for GitHub.

Project Deployment Actions Updated (UTC)
hash Ready Ready Preview, Comment Feb 3, 2026 8:54pm
3 Skipped Deployments
Project Deployment Actions Updated (UTC)
hashdotdesign Ignored Ignored Preview Feb 3, 2026 8:54pm
hashdotdesign-tokens Ignored Ignored Preview Feb 3, 2026 8:54pm
petrinaut Skipped Skipped Feb 3, 2026 8:54pm

@cursor
Copy link

cursor bot commented Feb 3, 2026

PR Summary

Medium Risk
Touches MIR control-flow structure by rewriting basic blocks and remapping IDs; mistakes could miswire jumps or desync statement-cost indexing, though the change is well-covered by targeted unit and snapshot tests.

Overview
Adds a new execution-analysis pass (execution::splitting) that splits MIR basic blocks into contiguous runs of statements with identical per-target support, rewrites all BasicBlockId references, and inserts Goto chains to preserve control flow while returning per-block TargetBitSet affinities.

Refactors execution cost bookkeeping to support block splitting by introducing StatementCostVec::remap/of and switching target indexing to typed containers (TargetArray = IdArray, TargetBitSet = FiniteBitSet). Core ID utilities are extended with IdArray, a reimplemented FiniteBitSet (single-integer backing + range ops + iterator + relations), and IdSlice::windows to support the splitting algorithm.

Adds extensive unit + snapshot tests covering region counting, block/terminator rewrites, ID remapping, and cost offset remapping.

Written by Cursor Bugbot for commit 3655222. This will update automatically on new commits. Configure here.

Copy link
Member Author

indietyp commented Feb 3, 2026

Warning

This pull request is not mergeable via GitHub because a downstack PR is open. Once all requirements are satisfied, merge this PR as a stack on Graphite.
Learn more

This stack of pull requests is managed by Graphite. Learn more about stacking.

@codecov
Copy link

codecov bot commented Feb 3, 2026

Codecov Report

❌ Patch coverage is 96.56020% with 28 lines in your changes missing coverage. Please review.
✅ Project coverage is 66.70%. Comparing base (1068059) to head (3655222).

Files with missing lines Patch % Lines
...l/mir/src/pass/analysis/execution/splitting/mod.rs 91.27% 9 Missing and 4 partials ⚠️
...mir/src/pass/analysis/execution/splitting/tests.rs 98.10% 6 Missing and 6 partials ⚠️
...l/hashql/mir/src/pass/analysis/execution/target.rs 0.00% 3 Missing ⚠️
Additional details and impacted files
@@                                     Coverage Diff                                     @@
##           bm/be-364-hashql-rework-symbol-to-be-faster-and-smaller    #8354      +/-   ##
===========================================================================================
- Coverage                                                    75.00%   66.70%   -8.31%     
===========================================================================================
  Files                                                          233      795     +562     
  Lines                                                        35772    71813   +36041     
  Branches                                                       851     3888    +3037     
===========================================================================================
+ Hits                                                         26831    47901   +21070     
- Misses                                                        8651    23364   +14713     
- Partials                                                       290      548     +258     
Flag Coverage Δ
apps.hash-ai-worker-ts 1.41% <ø> (?)
apps.hash-api 0.00% <ø> (?)
local.hash-graph-sdk 10.88% <ø> (?)
local.hash-isomorphic-utils 0.00% <ø> (?)
rust.hash-graph-api 2.88% <ø> (ø)
rust.hashql-ast 87.25% <ø> (?)
rust.hashql-compiletest 29.69% <ø> (?)
rust.hashql-eval 69.13% <ø> (ø)
rust.hashql-hir 89.11% <ø> (ø)
rust.hashql-mir 90.65% <96.56%> (?)
rust.hashql-syntax-jexpr 94.05% <ø> (ø)

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@codspeed-hq
Copy link

codspeed-hq bot commented Feb 3, 2026

CodSpeed Performance Report

Merging this PR will not alter performance

Comparing bm/be-303-hashql-split-basic-blocks-depending-on-largest-available (3655222) with bm/be-364-hashql-rework-symbol-to-be-faster-and-smaller (1068059)

Summary

✅ 41 untouched benchmarks
🗄️ 12 archived benchmarks run1

Footnotes

  1. 12 benchmarks were run, but are now archived. If they were deleted in another branch, consider rebasing to remove them from the report. Instead if they were added back, click here to restore them.

@augmentcode
Copy link

augmentcode bot commented Feb 3, 2026

🤖 Augment PR Summary

Summary: This PR introduces a MIR execution-analysis pass that splits basic blocks into contiguous regions with uniform execution-target support, producing per-block target affinities for downstream scheduling.

Changes:

  • Add a new BasicBlockSplitting pass that remaps BasicBlockIds, inserts Goto chains between split regions, and returns TargetBitSet affinities.
  • Extend execution cost tracking with StatementCostVec::remap, per-block cost slicing (of), and allocator access.
  • Introduce IdArray (fixed-size, ID-indexed array) and re-implement a fixed-size FiniteBitSet for compact target bitsets.
  • Update target abstractions with TargetArray/TargetBitSet aliases and adjust target ID layout.
  • Add comprehensive unit tests and UI snapshot coverage for splitting behavior, block ID remapping, and cost remapping.

Technical Notes: The split pass relies on per-statement cost presence to derive target support, and performs an in-place basic block list expansion/swap to keep statement order stable while changing block IDs.

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. 2 suggestions posted.

Fix All in Augment

Comment augment review to trigger a new review at any time.

let mut index = I::MIN;
IdArray::from_raw(self.raw.map(|elem| {
let value = func(index, elem);
index.increment_by(1);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

IdArray::map_enumerated increments index after every element; on the last element this will call increment_by(1) once past the final valid ID. If I’s valid range is tight (e.g. 0..=N-1), that trailing increment will panic even though no further IDs are needed.

Severity: medium

Fix This in Augment

🤖 Was this useful? React with 👍 or 👎, or 🚀 if it prevented an incident/outage.

Copy link

@cursor cursor bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cursor Bugbot has reviewed your changes and found 1 potential issue.

Bugbot Autofix is OFF. To automatically fix reported issues with Cloud Agents, enable Autofix in the Cursor dashboard.

#[must_use]
pub const fn all() -> [Self; Self::TOTAL] {
[Self::POSTGRES, Self::EMBEDDING, Self::INTERPRETER]
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TargetId::all() returns targets in wrong index order

Low Severity

The TargetId::all() function returns [POSTGRES, EMBEDDING, INTERPRETER] which corresponds to ID values [1, 2, 0]. This is inconsistent with the natural index ordering expected when building or indexing a TargetArray. If someone uses all() to populate an array positionally and then indexes it using TargetId values, they'll get mismatched data—for example, array[TargetId::INTERPRETER] would return data computed for POSTGRES instead.

Fix in Cursor Fix in Web

@github-actions
Copy link
Contributor

github-actions bot commented Feb 3, 2026

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$27.4 \mathrm{ms} \pm 151 \mathrm{μs}\left({\color{gray}3.79 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.25 \mathrm{ms} \pm 19.4 \mathrm{μs}\left({\color{gray}0.885 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.9 \mathrm{ms} \pm 93.0 \mathrm{μs}\left({\color{red}6.89 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$43.1 \mathrm{ms} \pm 300 \mathrm{μs}\left({\color{gray}0.700 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$14.7 \mathrm{ms} \pm 83.5 \mathrm{μs}\left({\color{gray}2.76 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$24.4 \mathrm{ms} \pm 139 \mathrm{μs}\left({\color{gray}1.96 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$43.3 \mathrm{ms} \pm 189 \mathrm{μs}\left({\color{gray}2.55 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$20.7 \mathrm{ms} \pm 113 \mathrm{μs}\left({\color{red}5.37 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$28.7 \mathrm{ms} \pm 132 \mathrm{μs}\left({\color{red}5.66 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.67 \mathrm{ms} \pm 23.2 \mathrm{μs}\left({\color{gray}0.751 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.83 \mathrm{ms} \pm 12.7 \mathrm{μs}\left({\color{gray}-1.027 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.19 \mathrm{ms} \pm 18.3 \mathrm{μs}\left({\color{gray}0.675 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$4.97 \mathrm{ms} \pm 21.3 \mathrm{μs}\left({\color{gray}-0.826 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.39 \mathrm{ms} \pm 16.6 \mathrm{μs}\left({\color{gray}0.652 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.91 \mathrm{ms} \pm 17.3 \mathrm{μs}\left({\color{gray}-0.812 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.27 \mathrm{ms} \pm 22.0 \mathrm{μs}\left({\color{gray}0.159 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.26 \mathrm{ms} \pm 13.4 \mathrm{μs}\left({\color{gray}-0.120 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.87 \mathrm{ms} \pm 19.3 \mathrm{μs}\left({\color{gray}-1.034 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.39 \mathrm{ms} \pm 9.48 \mathrm{μs}\left({\color{gray}-0.080 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.40 \mathrm{ms} \pm 14.4 \mathrm{μs}\left({\color{gray}3.69 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.42 \mathrm{ms} \pm 9.26 \mathrm{μs}\left({\color{gray}0.262 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.62 \mathrm{ms} \pm 12.4 \mathrm{μs}\left({\color{gray}0.040 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.54 \mathrm{ms} \pm 15.0 \mathrm{μs}\left({\color{gray}0.568 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.71 \mathrm{ms} \pm 14.1 \mathrm{μs}\left({\color{gray}-0.457 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.81 \mathrm{ms} \pm 15.2 \mathrm{μs}\left({\color{gray}2.19 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.42 \mathrm{ms} \pm 8.73 \mathrm{μs}\left({\color{gray}-0.368 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.65 \mathrm{ms} \pm 12.9 \mathrm{μs}\left({\color{gray}3.24 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.13 \mathrm{ms} \pm 14.0 \mathrm{μs}\left({\color{gray}-0.571 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.67 \mathrm{ms} \pm 13.3 \mathrm{μs}\left({\color{gray}1.01 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$2.96 \mathrm{ms} \pm 16.8 \mathrm{μs}\left({\color{gray}1.67 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.05 \mathrm{ms} \pm 15.8 \mathrm{μs}\left({\color{gray}1.59 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.64 \mathrm{ms} \pm 10.0 \mathrm{μs}\left({\color{gray}0.828 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$2.89 \mathrm{ms} \pm 15.3 \mathrm{μs}\left({\color{gray}1.50 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$38.7 \mathrm{ms} \pm 160 \mathrm{μs}\left({\color{gray}-1.679 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$77.0 \mathrm{ms} \pm 435 \mathrm{μs}\left({\color{red}31.7 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$44.0 \mathrm{ms} \pm 155 \mathrm{μs}\left({\color{gray}-1.373 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$45.6 \mathrm{ms} \pm 153 \mathrm{μs}\left({\color{gray}-0.958 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$53.3 \mathrm{ms} \pm 277 \mathrm{μs}\left({\color{gray}-1.971 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$41.1 \mathrm{ms} \pm 192 \mathrm{μs}\left({\color{gray}-0.197 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$412 \mathrm{ms} \pm 1.66 \mathrm{ms}\left({\color{red}67.6 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$94.1 \mathrm{ms} \pm 430 \mathrm{μs}\left({\color{gray}-2.240 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$84.6 \mathrm{ms} \pm 321 \mathrm{μs}\left({\color{gray}-2.125 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$280 \mathrm{ms} \pm 763 \mathrm{μs}\left({\color{gray}-2.337 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$14.8 \mathrm{ms} \pm 70.4 \mathrm{μs}\left({\color{gray}-0.895 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$14.8 \mathrm{ms} \pm 71.1 \mathrm{μs}\left({\color{gray}-0.452 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.1 \mathrm{ms} \pm 91.2 \mathrm{μs}\left({\color{gray}0.394 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$14.4 \mathrm{ms} \pm 65.3 \mathrm{μs}\left({\color{gray}-2.506 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$17.7 \mathrm{ms} \pm 100.0 \mathrm{μs}\left({\color{gray}0.241 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.3 \mathrm{ms} \pm 64.0 \mathrm{μs}\left({\color{gray}-3.454 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.5 \mathrm{ms} \pm 73.5 \mathrm{μs}\left({\color{gray}-2.829 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.3 \mathrm{ms} \pm 65.5 \mathrm{μs}\left({\color{gray}-4.432 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.1 \mathrm{ms} \pm 77.1 \mathrm{μs}\left({\color{gray}0.496 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$21.8 \mathrm{ms} \pm 141 \mathrm{μs}\left({\color{gray}-1.349 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$29.3 \mathrm{ms} \pm 290 \mathrm{μs}\left({\color{gray}-1.158 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$29.6 \mathrm{ms} \pm 222 \mathrm{μs}\left({\color{gray}1.82 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$28.7 \mathrm{ms} \pm 235 \mathrm{μs}\left({\color{gray}-2.381 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$28.3 \mathrm{ms} \pm 254 \mathrm{μs}\left({\color{gray}-3.497 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$29.7 \mathrm{ms} \pm 308 \mathrm{μs}\left({\color{gray}1.93 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$29.7 \mathrm{ms} \pm 299 \mathrm{μs}\left({\color{gray}2.17 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$29.1 \mathrm{ms} \pm 294 \mathrm{μs}\left({\color{gray}0.492 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$29.6 \mathrm{ms} \pm 285 \mathrm{μs}\left({\color{gray}4.46 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$30.0 \mathrm{ms} \pm 289 \mathrm{μs}\left({\color{gray}2.15 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.02 \mathrm{ms} \pm 40.2 \mathrm{μs}\left({\color{gray}0.891 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$45.8 \mathrm{ms} \pm 203 \mathrm{μs}\left({\color{gray}1.32 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$91.8 \mathrm{ms} \pm 452 \mathrm{μs}\left({\color{gray}-0.313 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$50.6 \mathrm{ms} \pm 322 \mathrm{μs}\left({\color{gray}-1.813 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$58.4 \mathrm{ms} \pm 362 \mathrm{μs}\left({\color{gray}-0.404 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$66.8 \mathrm{ms} \pm 384 \mathrm{μs}\left({\color{gray}-0.846 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$72.9 \mathrm{ms} \pm 442 \mathrm{μs}\left({\color{gray}-1.441 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$48.5 \mathrm{ms} \pm 402 \mathrm{μs}\left({\color{gray}1.01 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$75.7 \mathrm{ms} \pm 479 \mathrm{μs}\left({\color{gray}1.45 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$55.7 \mathrm{ms} \pm 434 \mathrm{μs}\left({\color{gray}1.75 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$63.0 \mathrm{ms} \pm 428 \mathrm{μs}\left({\color{gray}0.857 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$65.0 \mathrm{ms} \pm 337 \mathrm{μs}\left({\color{gray}-0.065 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$65.8 \mathrm{ms} \pm 443 \mathrm{μs}\left({\color{gray}1.56 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$124 \mathrm{ms} \pm 539 \mathrm{μs}\left({\color{lightgreen}-10.841 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$128 \mathrm{ms} \pm 555 \mathrm{μs}\left({\color{lightgreen}-6.845 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$102 \mathrm{ms} \pm 578 \mathrm{μs}\left({\color{gray}-1.152 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$596 \mathrm{ms} \pm 3.46 \mathrm{ms}\left({\color{gray}2.81 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/libs Relates to first-party libraries/crates/packages (area) area/tests New or updated tests type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

2 participants