DALD-PCAC: Density-Adaptive Learning Descriptor for Point Cloud Lossless Attribute Compression (TOMM 26)
cuda 11.7 + linux + python 37
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install plyfile==0.8 h5py open3d termcolor torchac tensorboard
Download data and copy them into Data.
Data/
├── semanticKITTI/dataset/
│ └── sequences
| ├── 00/velodyne/*.bin
| ├── 01
| └── ...
├── Ford
│ ├── Ford_01_q1mm/*.ply
│ ├── Ford_02_q1mm
│ └── Ford_03_q1mm
├── MPEGCAT1
│ ├── Arco_Valentino_Dense_vox12.ply
│ ├── Staue_Klimt_vox20.ply
│ └── ...
├── 8iVFBv2
│ ├── longdress/Ply/*.ply
│ ├── loot
│ ├── redandblack
│ └── soldier
├── MVUB
│ ├── andrew10/ply/*.ply
│ ├── andrew9
│ ├── david10
│ ├── david9
│ └── ...
├── RWTT
│ ├── RWT1_scene_dense_mesh_refine_texture_vox10.ply
│ └── ...
└── Owlii
├── basketball_player_vox11/*.ply
├── dancer_vox11
├── exercise_vox11
└── model_vox11
In networkTool.py set
IS_LIDAR = True #To decide whether to compress the LiDAR or the OBJ point clouds
CKPT_PATH = 'modelsave/RWTT_encoder_epoch_70035840.pth' # default ckpts when testingpython train.py
chmod +x testTool/pc_error testTool/tmc13v14 testTool/tmc13v23
python test.py # encoding and decoding testpython EncTop.py
python DecTop.pyMPEG dataset tested by ckpt trained on CNeT and PCL-PCD dataset;
sequence results;
and comparison of ckpts trained on RWTT/PCL-PCD/CNeT datasets.
