Visualisation, annotation and powerful filtering tools for houses discovered on Hemnet.
-
Updated
Nov 19, 2024 - PHP
Visualisation, annotation and powerful filtering tools for houses discovered on Hemnet.
Have you ever wanted to easily find the right house in the right place and that fits your budget? This real estate agency website is what you're looking for (if you live in Honduras); It was built in using JavaScript, Firebase, REST APIs, and other interesting technologies such as Cookies, Google Analytics and Intersection Observer
Interactive Map of Properties and Real Estate in Dhaka, Bangladesh, using data from BProperty.
A small approach to solving one of the many Kaggle problems
Ghana rental house price prediction using machine learning
A from-scratch Linear Regression model optimized via Gradient Descent for house price prediction.
Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.
An analysis of house prices in Beijing
Decision-ready house price regression: leakage-safe CV, RMSE tracking, and reproducible pipeline in scikit-learn.
Built a prediction model using both ridge and lasso advanced regression methods to predict house prices.
Scrape housing data from German housing portal Immowelt.de and retrieve as comma separted file.
This is an insight project to help in decision-making for buying and selling houses
Production-ready ML pipeline for regression tasks with modular architecture (0.94 R², Kaggle validated)
The missing guide to London properties
Project for UCL module CASA0006: Data Science for Spatial Systems. Exploring the Impact of Low Emission Zones on London House Prices
Repository for Kaggle Competition : House Prices : Advanced Regression Techniques
A model is trained through random forest. Afterwards a new data is been added to predict the house price. You can change the feature as well. but when u change the feature u should change the data accordingly.
🏡 Predict house prices using machine learning (Linear, Random Forest) with full EDA, preprocessing and model evaluation.
This repository includes my House Prices Multi-Variate Linear Regression-Flatiron School Module 2 Project. In this project I made use of the OSEMN methodology incorporating packages such as Pandas, NumPy, Matplotlib, Seaborn, and Scikit-Learn.
Add a description, image, and links to the house-prices topic page so that developers can more easily learn about it.
To associate your repository with the house-prices topic, visit your repo's landing page and select "manage topics."