Real-world open data analysis using Excel pivots, visuals, and insights.
-
Updated
Dec 8, 2025 - Jupyter Notebook
Real-world open data analysis using Excel pivots, visuals, and insights.
A comprehensive end-to-end data warehouse project using MYSQL, covering ETL pipelines, data modeling, and analytics/reporting.
In this our project we aimed to gather and analyze detailed information on apps in the Google Play Store in order to provide insights on app features and the current state of the Android app market.
Generate valuable insights from customer and transactions data.
This project automates exploratory data analysis (EDA) with DataPulse, enabling users to upload, clean, and visualize datasets effortlessly. It integrates machine learning models like Logistic Regression and XGBoost for insightful analysis via an intuitive Streamlit interface.
Enterprise-grade CSV data quality analyzer powered by Machine Learning. Automatic anomaly detection, statistical profiling, PII scanning, and actionable insights. Secure user authentication, custom data pipelines, and interactive dashboards. Production-ready SaaS application.
Анализ эффективности рекламных кампаний и проверка корректности атрибуции пользователей. Проект включает работу с маркетинговыми данными: установки пользователей, рекламные расходы, доходы и каналы привлечения.
Matelda, an interactive system for multi-table error detection that combines automated error detection with human-in-the-loop refinement.
Add a description, image, and links to the data-cl topic page so that developers can more easily learn about it.
To associate your repository with the data-cl topic, visit your repo's landing page and select "manage topics."