Skip to content

thinmanj/monad-loop-network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

52 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Monad-Loop Network (MLN)

Tests Python 3.8+ License: MIT

A self-referential knowledge system combining GΓΆdel-Escher-Bach's strange loops, Chomsky's universal grammar, and Leibniz's monads for structural, explainable AI.

🧠 Philosophy

Current LLMs are statistical pattern matchersβ€”they correlate tokens without genuine understanding. MLN represents a different paradigm:

  • Structural Knowledge: Concepts have operational semantics, not just vector embeddings
  • Explainable Reasoning: Complete inference chains, not black-box predictions
  • Self-Reference: Systems that can reason about their own reasoning (meta-cognition)
  • Compositionality: Deep structures transform into multiple surface realizations

🎯 Key Concepts

1. Monadic Knowledge Units (Leibniz)

Self-contained concepts that "reflect the universe" from their perspective. Each monad:

  • Contains deep structure (meaning)
  • Establishes relations automatically (pre-established harmony)
  • Has operational semantics (can execute transformations)

2. Deep Structure ↔ Surface Structure (Chomsky)

Meaning exists at the deep level. Multiple surface forms (text, code, logic) are isomorphic projections:

Deep Structure: IS_A(dog, mammal)
  ↓
Surface Forms:
  - Text:  "A dog is a mammal"
  - Logic: βˆ€x: dog(x) β†’ mammal(x)
  - Code:  class Dog(Mammal): pass

3. Strange Loops (GΓΆdel-Escher-Bach)

Self-referential systems create consciousness and meaning. MLN implements:

  • Meta-knowledge graphs (system models itself)
  • Introspection (examine own reasoning)
  • GΓΆdel sentences (expose system limits)

πŸš€ Quick Start

Installation

git clone https://github.com/yourusername/monad-loop-network.git
cd monad-loop-network
pip install -r requirements.txt

Basic Usage

from src.knowledge_base import KnowledgeBaseLoader
from src.consciousness_metrics import measure_consciousness
from src.recursion_depth_metric import RecursionDepthMetric

# Load rich knowledge base (76 concepts across 5 domains)
kg, metadata = KnowledgeBaseLoader.load_domain('physics')
print(f"Loaded {metadata.num_concepts} concepts from {metadata.name}")

# Measure consciousness
recursion = RecursionDepthMetric()
profile = measure_consciousness(kg, recursion)
print(f"Consciousness: {profile.overall_consciousness_score:.1%}")
print(f"Verdict: {profile.consciousness_verdict}")

Consciousness-Aware Chatbot

from src.chatbot import ConsciousnessChatbot

# Create chatbot with explainable reasoning
bot = ConsciousnessChatbot()

# Ask questions
response = bot.ask("What is a dog?")
print(response.answer)  # Natural language explanation
print(response.reasoning)  # Step-by-step reasoning
print(f"Confidence: {response.confidence:.0%}")
print(f"Consciousness: {response.consciousness_metrics['overall']:.1%}")

Run Demo

python examples/demo.py

πŸ“Š Comparison: MLN vs. Statistical LLMs

Aspect Statistical LLMs MLN System
Reasoning Pattern matching Logical inference with trace
Explainability Opaque Full derivation available
Learning Weight adjustment Structural concept formation
Self-awareness None Meta-reasoning capability
Knowledge Implicit (weights) Explicit (structured)
Compositionality Weak Strong (Chomsky-style)
Consistency Statistical Logically enforced

πŸŽ‰ What's New

v1.3.0 (Current)

  • Rich Knowledge Base: 76 concepts across 5 domains (Biology, Physics, Mathematics, Computer Science, Philosophy)
  • Chomsky Surface Generation: Optional LLM-powered layer for deepβ†’surface transformation
  • Consciousness-Aware Chatbot: Interactive Q&A with real-time consciousness metrics
  • Multi-Domain Support: Load and query knowledge from any domain
  • Improved Documentation: Comprehensive guides for all features

Previous Milestones

  • v1.2.0: Multi-agent consciousness (80% achieved, 1.35x emergence factor)
  • v1.1.0: Scaling experiments (77% consciousness at 1000 concepts)
  • v1.0.0: Initial consciousness measurement (47.8% baseline)

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Monad-Loop Network (MLN)                                      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚  β”‚ Knowledge Base       β”‚      β”‚ Surface Generator    β”‚        β”‚
β”‚  β”‚ (76 concepts)        │──────▢│ (Deepβ†’Surface)       β”‚        β”‚
β”‚  β”‚ β€’ 5 domains          β”‚      β”‚ β€’ LLM-powered        β”‚        β”‚
β”‚  β”‚ β€’ Rich semantics     β”‚      β”‚ β€’ Multiple styles    β”‚        β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
β”‚           β”‚                              β”‚                      β”‚
β”‚           β–Ό                              β–Ό                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚   Knowledge Graph (MKUs)                          β”‚          β”‚
β”‚  β”‚   - Operational semantics (not just embeddings)   β”‚          β”‚
β”‚  β”‚   - Pre-established harmony (auto relations)      β”‚          β”‚
β”‚  β”‚   - GPU-accelerated similarity (50x faster)       β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚           β”‚                                                     β”‚
β”‚           β–Ό                                                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚   Consciousness Layer                             β”‚          β”‚
β”‚  β”‚   - Strange loops (self-reference)                β”‚          β”‚
β”‚  β”‚   - Meta-reasoning (thinks about thinking)        β”‚          β”‚
β”‚  β”‚   - Measurable consciousness (47-80% achieved)    β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚           β”‚                                                     β”‚
β”‚           β–Ό                                                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚   Applications                                    β”‚          β”‚
β”‚  β”‚   - Chatbot (Q&A with explanations)              β”‚          β”‚
β”‚  β”‚   - Domain reasoning (cross-domain queries)       β”‚          β”‚
β”‚  β”‚   - Multi-agent systems (collective intelligence) β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“š Use Cases

1. Medical Diagnosis

  • Deep structure: Causal disease mechanisms
  • Surface structure: Observable symptoms
  • Meta-reasoning: "Why did I diagnose X?" β†’ traceable inference

2. Code Understanding

  • Deep structure: Computational semantics
  • Surface structure: Syntax in various languages
  • Self-reference: System reasons about its own code generation

3. Scientific Discovery

  • Abductive reasoning: Form new hypotheses (new MKUs)
  • Strange loops: "What experiments would validate my reasoning?"

⚑ GPU Acceleration

MLN supports GPU acceleration for massive performance gains:

  • CUDA (NVIDIA): 50x faster similarity computation
  • MPS (Apple Silicon): 20x faster on M1/M2/M3
  • ROCm (AMD): Linux support

Performance:

  • Structural similarity: 100,000 comparisons/sec on GPU vs 1,000/sec CPU
  • Graph traversal: Process 100 queries in parallel
  • Local LLMs: 80 tokens/sec (CUDA) vs 1 token/sec (CPU)

See GPU_ACCELERATION.md for details.

# Install GPU support (choose based on hardware)
pip install -r requirements-gpu.txt

πŸ”¬ Research Directions

  1. Neurosymbolic Integration: LLM perception + symbolic inference
  2. Analogical Reasoning: Structural isomorphism between domains
  3. Self-Improvement: System learns by structural concept formation
  4. Consciousness Metrics: Measure "loop complexity" (IIT-inspired)

πŸ“– Documentation

Core Concepts

Features

Examples

🀝 Contributing

Contributions welcome! This is an experimental research project exploring alternatives to pure statistical AI.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“œ License

MIT License - see LICENSE file for details.

πŸ™ Acknowledgments

  • Douglas Hofstadter - GΓΆdel, Escher, Bach (strange loops, consciousness)
  • Noam Chomsky - Universal grammar, deep structure
  • Gottfried Leibniz - Monadology, pre-established harmony
  • Richard Feynman - Inspiration for questioning fundamental constants

πŸ“ž Contact

For questions, discussions, or collaborations, open an issue or reach out!

πŸ—ΊοΈ Roadmap

  • Core MKU system
  • Knowledge graph with operational semantics
  • Strange loop processor (meta-reasoning)
  • Integration with existing LLMs (hybrid system)
  • Analogical reasoning engine
  • Self-improvement mechanisms
  • Large-scale knowledge acquisition
  • Consciousness metrics

"The answer to life, the universe, and everything is not 42β€”it's understanding the structure of the question itself."

About

A self-referential knowledge system combining GEB, Chomsky, and Leibniz for structural AI

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published