Enterprise-grade AI video generation for iMessage and messaging platforms. Like Giphy, but for AI-generated videos.
VideoGen Messenger allows users to search, generate, and share AI-powered videos directly within iMessage and other messaging platforms. The hybrid architecture combines instant pre-generated content with on-demand AI generation for unlimited creative possibilities.
- AI Video Generation: Create custom videos using Google Veo 3, Runway Gen-3, and other cutting-edge AI models
- Instant Library: 1,000+ pre-generated trending videos for immediate sharing
- Smart Search: Elasticsearch-powered search with machine learning relevance
- Native iMessage: Deep iOS integration with Messages framework
- Global CDN: Fast delivery via CloudFront/Fastly edge network
- Content Moderation: AI-powered pre and post-generation moderation
- Monetization Ready: Tiered pricing, API access, marketplace
- Tier 1 (90%): Pre-generated library - Instant delivery
- Tier 2 (8%): Fast AI generation - 30-90 seconds
- Tier 3 (2%): Premium quality - 1-3 minutes
Frontend (iOS)
- Swift 5.9+ / SwiftUI
- MSMessagesAppViewController
- AVFoundation for video playback
- URLSession networking
Backend
- API: Node.js/Express or Go
- Search: Elasticsearch 8.x
- Queue: BullMQ + Redis
- Storage: AWS S3
- CDN: CloudFront/Fastly
- Database: PostgreSQL + DynamoDB
AI Generation
- Primary: Google Veo 3 Fast
- Secondary: Minimax/HeyGen
- Premium: Runway Gen-3
- Templates: Remotion
Security & Moderation
- Azure AI Content Safety
- Multi-DRM (Widevine, FairPlay, PlayReady)
- OAuth2 + JWT authentication
VideoGenMessenger/
├── ios/ # iOS iMessage extension
│ ├── VideoGenMessenger/ # Main app
│ └── VideoGenMessengerExtension/ # iMessage extension
├── backend/ # Backend services
│ ├── api/ # REST API
│ ├── services/ # Microservices
│ │ ├── generation/ # Video generation service
│ │ ├── search/ # Search service
│ │ ├── moderation/ # Content moderation
│ │ └── analytics/ # Analytics service
│ ├── config/ # Configuration files
│ └── utils/ # Shared utilities
├── infrastructure/ # IaC (Terraform/CDK)
├── docs/ # Documentation
└── assets/ # Static assets
- Xcode 15.0+
- iOS 17.0+
- Node.js 18+ or Go 1.21+
- Redis 7.0+
- PostgreSQL 15+
- AWS Account
- Google Cloud Account (for Veo 3 API)
- Clone the repository
cd VideoGenMessenger- Set up iOS project
cd ios
# Open VideoGenMessenger.xcodeproj in Xcode
# Configure signing and provisioning- Set up backend
cd backend/api
npm install
cp .env.example .env
# Configure environment variables
npm run dev- Set up infrastructure
cd infrastructure
terraform init
terraform plan
terraform apply-
API Keys: Add to
.envfileGOOGLE_VEO_API_KEYAWS_ACCESS_KEY_IDAWS_SECRET_ACCESS_KEYREDIS_URLDATABASE_URL
-
App Groups: Configure in Xcode
group.com.yourcompany.videogenmessenger
-
CDN: Set up CloudFront distribution
- Origin: S3 bucket
- Cache behaviors for video content
- Project structure
- iOS iMessage extension
- Basic API endpoints
- Google Veo 3 integration
- S3 + CloudFront setup
- Basic search (Elasticsearch)
- Queue system (BullMQ)
- Android SDK
- Advanced caching
- Monetization implementation
- Analytics dashboard
- Enhanced moderation
- Multi-region deployment
- Custom model fine-tuning
- White-label offering
- Advanced analytics
- SLA monitoring
Search Videos
GET /api/v1/search?q=happy+birthday&limit=20
Generate Video
POST /api/v1/generate
{
"prompt": "A happy birthday celebration with balloons",
"quality": "hd",
"duration": 5
}
Trending Videos
GET /api/v1/trending?limit=50
See API Documentation for complete reference.
- API Uptime: 99.95%
- Search Latency: <500ms P95
- Video Delivery: <2s start time
- Generation Time: <90s P90
- Cache Hit Rate: >60%
At 10K Daily Active Users:
- AI Generation: $15K-60K/month
- Infrastructure: $500-1K/month
- CDN: $200-500/month
- Total: ~$17K-67K/month
Revenue Target:
- 500-1,000 paying users @ $50-200/month
- Break-even: $50K-200K/month
- Authentication: OAuth2 + JWT
- Content Moderation: Pre + post generation AI scanning
- DRM: Multi-DRM for premium content
- Compliance: GDPR, CCPA compliant
- Rate Limiting: Token bucket algorithm
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Commit changes (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open Pull Request
Copyright (c) 2025. All rights reserved.
- Documentation: docs/
- Issues: GitHub Issues
- Email: [email protected]
- Research based on Giphy, Netflix, Instagram, TikTok, and YouTube architectures
- AI providers: Google (Veo 3), Anthropic (Claude), Runway, Minimax
- Infrastructure: AWS, Fastly, Elasticsearch