|
2 | 2 |
|
3 | 3 | This repository includes the code used to generate numerical results in the ICASSP 2020 conference paper titled "Decentralized optimization with non-identical sampling in presence of stragglers". |
4 | 4 |
|
5 | | -<img src="data/archive10_icassp_final_results/run_mnist_linear1_distinct_10_PWG_perfect_amb_iclr_10_bern_08_60_10_metro.png?raw=true"/> |
6 | | -<img src="data/archive10_icassp_final_results/run_mnist_linear1_distinct_10_PWG_rand_walk_amb_iclr_10_bern_08_60_10_metro.png?raw=true"/> |
7 | | -<img src="data/archive10_icassp_final_results/run_mnist_relu1_distinct_10_PWG_rand_walk_amb_iclr_10_bern_08_60_10_metro.png?raw=true"/> |
| 5 | +| MNIST | Fashion-MNIST | |
| 6 | +|:-------------------------:|:-------------------------:| |
| 7 | +| <img width="100%" src="data/archive10_icassp_final_results/run_mnist_linear1_distinct_10_PWG_perfect_amb_iclr_10_bern_08_60_10_metro.png?raw=true"> | <img width="100%" src="data/archive10_icassp_final_results/run_fashion_mnist_linear1_distinct_10_PWG_perfect_amb_iclr_10_bern_08_60_10_metro.png?raw=true">| |
| 8 | +|<img width="100%" src="data/archive10_icassp_final_results/run_mnist_linear1_distinct_10_PWG_rand_walk_amb_iclr_10_bern_08_60_10_metro.png?raw=true"> | <img width="100%" src="data/archive10_icassp_final_results/run_fashion_mnist_linear1_distinct_10_PWG_rand_walk_amb_iclr_10_bern_08_60_10_metro.png?raw=true">| |
| 9 | +|<img width="100%" src="data/archive10_icassp_final_results/run_mnist_relu1_distinct_10_PWG_rand_walk_amb_iclr_10_bern_08_60_10_metro.png?raw=true"> | <img width="100%" src="data/archive10_icassp_final_results/run_fashion_mnist_relu1_distinct_10_PWG_perfect_amb_iclr_10_bern_08_60_10_metro.png?raw=true">| |
8 | 10 |
|
9 | 11 | ## Recreating results in paper |
10 | | -#### Generate data: |
| 12 | +#### Generating data: |
11 | 13 | * Sample usage: `python -u run_main.py --model fashion_mnist --data_dist distinct_10 --func linear1 --opt PWG --consensus perfect --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000` |
12 | 14 | * `python -u run_main.py --model cifar10 --data_dist distinct_10 --func conv --opt PWG --consensus perfect --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000 --max_loss_eval_size 2 --lrate_start 0.001 --lrate_end 0.0001 --weights_scale 0.08` |
13 | 15 | * Execute [`run_main.sh`](run_main.sh) to run all simulations included in the paper. |
14 | 16 |
|
15 | | -#### Generate plots: |
| 17 | +#### Generating plots: |
16 | 18 | Use the following to generate all plots. |
17 | 19 | * `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords linear1 perfect --xhide --fig_size 6.5 2.08 --ylim 0.25 100` |
18 | 20 | * `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords linear1 rand_walk --all_workers --xhide --fig_size 6.5 2.08 --ylim 0.35 100 --filter_sigma 5` |
19 | 21 | * `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords relu1 perfect --fig_size 6.5 2.52 --ylim 0.2 1` |
20 | 22 |
|
21 | 23 |
|
22 | 24 |
|
| 25 | + |
| 26 | +----- |
| 27 | + |
| 28 | + |
| 29 | + |
23 | 30 | ## Other experiments |
24 | 31 |
|
25 | 32 | #### Useful commands: |
|
0 commit comments