Skip to content

Commit 91a0f18

Browse files
committed
Merge branch 'master' of github.com:thadikari/consensus
2 parents 061d0a1 + 770b393 commit 91a0f18

14 files changed

+600971
-14
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,16 +8,16 @@ This repository includes the code used to generate numerical results in the ICAS
88

99
## Recreating results in paper
1010
#### Generate data:
11-
* `python -u run_main.py --model mnist --data_dist distinct_10 --func linear1 --opt PWG --consensus perfect --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000`
12-
* `python -u run_main.py --model mnist --data_dist distinct_10 --func linear1 --opt PWG --consensus rand_walk --num_consensus_rounds 10 --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000`
13-
* `python -u run_main.py --model mnist --data_dist distinct_10 --func relu1 --opt PWG --consensus rand_walk --num_consensus_rounds 10 --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000`
14-
* Change accordingly and execute [`run_main.sh`](run_main.sh) to parallelly run all simulations.
11+
* Sample usage: `python -u run_main.py --model fashion_mnist --data_dist distinct_10 --func linear1 --opt PWG --consensus perfect --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000`
12+
* `python -u run_main.py --model cifar10 --data_dist distinct_10 --func conv --opt PWG --consensus perfect --strag_dist bern --strag_dist_param 0.8 --num_samples 60 --grad_combine Equal Proportional --save --graph_def amb_iclr_10 --num_iters 5000 --max_loss_eval_size 2 --lrate_start 0.001 --lrate_end 0.0001 --weights_scale 0.08`
13+
* Execute [`run_main.sh`](run_main.sh) to run all simulations included in the paper.
1514

1615
#### Generate plots:
1716
Use the following to generate all plots.
18-
* `python plot_run_main.py --ylog --num_iters 5000 --no_dots --silent --save --keywords linear1 perfect --xhide --fig_size 6.5 2.05`
19-
* `python plot_run_main.py --ylog --num_iters 5000 --no_dots --silent --save --keywords linear1 rand_walk --all_workers --xhide --fig_size 6.5 2.05`
20-
* `python plot_run_main.py --ylog --num_iters 5000 --no_dots --silent --save --keywords relu1 --all_workers --fig_size 6.5 2.5`
17+
* `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords linear1 perfect --xhide --fig_size 6.5 2.08 --ylim 0.25 100`
18+
* `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords linear1 rand_walk --all_workers --xhide --fig_size 6.5 2.08 --ylim 0.35 100 --filter_sigma 5`
19+
* `python plot_run_main.py --ylog --num_iters 100000 --no_dots --silent --save --keywords relu1 perfect --fig_size 6.5 2.52 --ylim 0.2 1`
20+
2121

2222

2323
## Other experiments

0 commit comments

Comments
 (0)