Skip to content

Conversation

Copy link
Contributor

Copilot AI commented Aug 31, 2025

Coding agent has begun work on **# GitHub Copilot: Fix GremlinGPT Import System & Environment Hydration

Task Overview

Fix all import errors throughout the GremlinGPT system by implementing proper environment-specific global imports and establishing correct hydration order for seamless multi-environment startup.

System Architecture Context

Environment Structure

conda_envs/environments/
├── dashboard/globals.py    # Dashboard UI globals
├── memory/globals.py       # Vector store & embeddings globals  
├── nlp/globals.py         # NLP engine & transformer globals
├── orchestrator/globals.py # Core orchestration globals
└── scraper/globals.py     # Web scraping globals

Module Distribution by Environment

  • Orchestrator Environment: core/, agent_core/, agents/, backend/, run/
  • Scraper Environment: scraper/, trading_core/
  • NLP Environment: nlp_engine/, self_training/
  • Memory Environment: memory/, utils/
  • Dashboard Environment: frontend/, backend/interface/

Critical Fix Requirements

1. Environment-Specific Global Imports

Each Python file must import from its corresponding environment's globals.py:

# For files in orchestrator-managed modules (core/, agents/, backend/)
from conda_envs.environments.orchestrator.globals import *

# For files in scraper modules (scraper/, trading_core/)
from conda_envs.environments.scraper.globals import *

# For files in NLP modules (nlp_engine/, self_training/)
from conda_envs.environments.nlp.globals import *

# For files in memory modules (memory/, utils/)
from conda_envs.environments.memory.globals import *

# For files in dashboard modules (frontend/, backend/interface/)
from conda_envs.environments.dashboard.globals import *

2. Fix Cross-Environment Import Patterns

Replace broken imports with proper environment-aware imports:

BEFORE (Broken):

from core.orchestrator import *
from memory.vector_store import *
from agents.learning_agent import *

AFTER (Fixed):

# Use relative imports within same environment
from ..core.orchestrator import *

# Use inter-environment communication via API/message passing
# Instead of direct imports across environments

3. Implement Lazy Loading Pattern

Add lazy loading to prevent circular dependencies and premature initialization:

# Add to all module __init__.py files
def lazy_import(module_name):
    """Lazy import to prevent circular dependencies"""
    import importlib
    return importlib.import_module(module_name)

# Use in modules that have initialization dependencies
def get_orchestrator():
    if not hasattr(get_orchestrator, 'module'):
        get_orchestrator.module = lazy_import('core.orchestrator')
    return get_orchestrator.module

4. Establish Proper Hydration Order

Fix the startup sequence in run/start_all.sh to follow dependency hierarchy:

Correct Startup Order:

  1. Memory Environment (foundational data layer)
  2. NLP Environment (language processing)
  3. Scraper Environment (data collection)
  4. Orchestrator Environment (coordination & agents)
  5. Dashboard Environment (UI & visualization)

5. Add Environment Health Checks

Before each environment starts, verify dependencies are ready:

# Add to each environment's globals.py
def check_environment_health():
    """Verify environment dependencies are loaded"""
    required_modules = get_required_modules()
    for module in required_modules:
        try:
            importlib.import_module(module)
        except ImportError as e:
            logger.error(f"Missing dependency: {module}")
            return False
    return True

Specific Files Requiring Import Fixes

High Priority (Most Import Errors):

  1. ./scraper/* (11 files) - Fix imports from scraper/globals.py
  2. ./nlp_engine/* (10 files) - Fix imports from nlp/globals.py
  3. ./backend/api/* (9 files) - Fix imports from orchestrator/globals.py
  4. ./core/* (7 files) - Fix imports from orchestrator/globals.py
  5. ./trading_core/* (6 files) - Fix imports from scraper/globals.py
  6. ./agents/* (6 files) - Fix imports from orchestrator/globals.py
  7. ./agent_core/* (6 files) - Fix imports from orchestrator/globals.py

Medium Priority:

  1. ./self_training/* (5 files) - Fix imports from nlp/globals.py
  2. ./run/* (5 files) - Fix imports from orchestrator/globals.py
  3. ./backend/* (5 files) - Fix imports from orchestrator/globals.py
  4. ./executors/* (4 files) - Fix imports from orchestrator/globals.py

Lower Priority:

  1. ./utils/* (3 files) - Fix imports from memory/globals.py
  2. ./tools/* (3 files) - Fix imports from orchestrator/globals.py
  3. ./self_mutation_watcher/* (3 files) - Fix imports from orchestrator/globals.py
  4. ./memory/vector_store/* (2 files) - Fix imports from memory/globals.py

Implementation Steps

Step 1: Update All Python Files

For each .py file in the system:

  1. Add appropriate environment global import at the top
  2. Replace broken cross-environment imports with proper patterns
  3. Add lazy loading for heavy dependencies
  4. Implement error handling for missing modules

Step 2: Fix Environment Globals

Ensure each conda_envs/environments/*/globals.py contains:

  1. All necessary imports for that environment's modules
  2. Shared configuration variables
  3. Environment-specific logging setup
  4. Health check functions

Step 3: Update Startup Scripts

Modify run/start_all.sh to:

  1. Start environments in proper dependency order
  2. Wait for health checks before proceeding
  3. Implement retry logic for failed starts
  4. Provide clear error messages for debugging

Step 4: Add Cross-Environment Communication

Instead of direct imports between environments:

  1. Use message queues (Redis/RabbitMQ)
  2. REST API calls between services
  3. Shared database/cache for state
  4. Event-driven architecture

Expected Results

After implementing these fixes:

  • ✅ Zero import errors across all 100+ Python files
  • ✅ Smooth startup sequence without dropouts
  • ✅ Proper environment isolation
  • ✅ Lazy loading prevents circular dependencies
  • ✅ Scalable inter-environment communication
  • ✅ Robust error handling and recovery

Validation Tests

Create test scripts to verify:

  1. All modules can be imported without errors
  2. Startup sequence completes successfully
  3. Cross-environment communication works
  4. System remains stable under load
  5. Environment isolation is maintained

This comprehensive fix will transform the GremlinGPT system from a broken import mess into a properly architected, multi-environment application that starts reliably and runs smoothly.** and will replace this description as work progresses.

See problem context

GitHub Copilot: Fix GremlinGPT Import System & Environment Hydration

Task Overview

Fix all import errors throughout the GremlinGPT system by implementing proper environment-specific global imports and establishing correct hydration order for seamless multi-environment startup.

System Architecture Context

Environment Structure

conda_envs/environments/
├── dashboard/globals.py    # Dashboard UI globals
├── memory/globals.py       # Vector store & embeddings globals  
├── nlp/globals.py         # NLP engine & transformer globals
├── orchestrator/globals.py # Core orchestration globals
└── scraper/globals.py     # Web scraping globals

Module Distribution by Environment

  • Orchestrator Environment: core/, agent_core/, agents/, backend/, run/
  • Scraper Environment: scraper/, trading_core/
  • NLP Environment: nlp_engine/, self_training/
  • Memory Environment: memory/, utils/
  • Dashboard Environment: frontend/, backend/interface/

Critical Fix Requirements

1. Environment-Specific Global Imports

Each Python file must import from its corresponding environment's globals.py:

# For files in orchestrator-managed modules (core/, agents/, backend/)
from conda_envs.environments.orchestrator.globals import *

# For files in scraper modules (scraper/, trading_core/)
from conda_envs.environments.scraper.globals import *

# For files in NLP modules (nlp_engine/, self_training/)
from conda_envs.environments.nlp.globals import *

# For files in memory modules (memory/, utils/)
from conda_envs.environments.memory.globals import *

# For files in dashboard modules (frontend/, backend/interface/)
from conda_envs.environments.dashboard.globals import *

2. Fix Cross-Environment Import Patterns

Replace broken imports with proper environment-aware imports:

BEFORE (Broken):

from core.orchestrator import *
from memory.vector_store import *
from agents.learning_agent import *

AFTER (Fixed):

# Use relative imports within same environment
from ..core.orchestrator import *

# Use inter-environment communication via API/message passing
# Instead of direct imports across environments

3. Implement Lazy Loading Pattern

Add lazy loading to prevent circular dependencies and premature initialization:

# Add to all module __init__.py files
def lazy_import(module_name):
    """Lazy import to prevent circular dependencies"""
    import importlib
    return importlib.import_module(module_name)

# Use in modules that have initialization dependencies
def get_orchestrator():
    if not hasattr(get_orchestrator, 'module'):
        get_orchestrator.module = lazy_import('core.orchestrator')
    return get_orchestrator.module

4. Establish Proper Hydration Order

Fix the startup sequence in run/start_all.sh to follow dependency hierarchy:

Correct Startup Order:

  1. Memory Environment (foundational data layer)
  2. NLP Environment (language processing)
  3. Scraper Environment (data collection)
  4. Orchestrator Environment (coordination & agents)
  5. Dashboard Environment (UI & visualization)

5. Add Environment Health Checks

Before each environment starts, verify dependencies are ready:

# Add to each environment's globals.py
def check_environment_health():
    """Verify environment dependencies are loaded"""
    required_modules = get_required_modules()
    for module in required_modules:
        try:
            importlib.import_module(module)
        except ImportError as e:
            logger.error(f"Missing dependency: {module}")
            return False
    return True

Specific Files Requiring Import Fixes

High Priority (Most Import Errors):

  1. ./scraper/* (11 files) - Fix imports from scraper/globals.py
  2. ./nlp_engine/* (10 files) - Fix imports from nlp/globals.py
  3. ./backend/api/* (9 files) - Fix imports from orchestrator/globals.py
  4. ./core/* (7 files) - Fix imports from orchestrator/globals.py
  5. ./trading_core/* (6 files) - Fix imports from scraper/globals.py
  6. ./agents/* (6 files) - Fix imports from orchestrator/globals.py
  7. ./agent_core/* (6 files) - Fix imports from orchestrator/globals.py

Medium Priority:

  1. ./self_training/* (5 files) - Fix imports from nlp/globals.py
  2. ./run/* (5 files) - Fix imports from orchestrator/globals.py
  3. ./backend/* (5 files) - Fix imports from orchestrator/globals.py
  4. ./executors/* (4 files) - Fix imports from orchestrator/globals.py

Lower Priority:

  1. ./utils/* (3 files) - Fix imports from memory/globals.py
  2. ./tools/* (3 files) - Fix imports from orchestrator/globals.py
  3. ./self_mutation_watcher/* (3 files) - Fix imports from orchestrator/globals.py
  4. ./memory/vector_store/* (2 files) - Fix imports from memory/globals.py

Implementation Steps

Step 1: Update All Python Files

For each .py file in the system:

  1. Add appropriate environment global import at the top
  2. Replace broken cross-environment imports with proper patterns
  3. Add lazy loading for heavy dependencies
  4. Implement error handling for missing modules

Step 2: Fix Environment Globals

Ensure each conda_envs/environments/*/globals.py contains:

  1. All necessary imports for that environment's modules
  2. Shared configuration variables
  3. Environment-specific logging setup
  4. Health check functions

Step 3: Update Startup Scripts

Modify run/start_all.sh to:

  1. Start environments in proper dependency order
  2. Wait for health checks before proceeding
  3. Implement retry logic for failed starts
  4. Provide clear error messages for debugging

Step 4: Add Cross-Environment Communication

Instead of direct imports between environments:

  1. Use message queues (Redis/RabbitMQ)
  2. REST API calls between services
  3. Shared database/cache for state
  4. Event-driven architecture

Expected Results

After implementing these fixes:

  • ✅ Zero import errors across all 100+ Python files
  • ✅ Smooth startup sequence without dropouts
  • ✅ Proper environment isolation
  • ✅ Lazy loading prevents circular dependencies
  • ✅ Scalable inter-environment communication
  • ✅ Robust error handling and recovery

Validation Tests

Create test scripts to verify:

  1. All modules can be imported without errors
  2. Startup sequence completes successfully
  3. Cross-environment communication works
  4. System remains stable under load
  5. Environment isolation is maintained

This comprehensive fix will transform the GremlinGPT system from a broken import mess into a properly architected, multi-environment application that starts reliably and runs smoothly.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants