nmpc_performance.mp4
nmpc_vs_method.mp4
Installation of acados according to the following instructions: https://docs.acados.org/python_interface/index.html
Current (21 August 2023) version on imitation library does not yet support Gymnasium. So we are using our own fork of it with necessary modifications.
After cloning this repo:
git submodule initgit submodule updatecd imitationpip install -e .
| Hyper-parameter | Value |
|---|---|
| COMMON: Learning Rate | 0.0003 |
| COMMON: Number of Expert Demos | 100 |
| COMMON: Number of Training Steps | 2,000,000 |
| PPO: Net. Arch. | pi:[256, 256] vf:[256, 256] |
| PPO: Batch Size | 64 |
| SAC: Net. Arch. | pi:[256, 256] qf:[256, 256] |
| SAC: Batch Size | 256 |
| BC: Net. Arch. | pi:[32, 32] qf:[32, 32] |
| BC: Batch Size | 32 |
| DAgger: Online Episodes | 500 |
| Density: Kernel type | Gaussian |
| Density: Kernel bandwidth | 0.5 |
| Density: Net. Arch. | pi:[256, 256] qf:[256, 256] |
| GAIL: Reward Net Arch. | [32, 32] |
| GAIL: Policy Net Arch. | pi:[256, 256] qf:[256, 256] |
| GAIL: Policy Replay Buffer Capacity | 512 |
| GAIL: Batch Size | 128 |
| AIRL: Reward Net Arch. | [32, 32] |
| AIRL: Policy Net Arch. | pi:[256, 256] qf:[256, 256] |
| AIRL: Batch Size | 128 |
| AIRL: Policy Replay Buffer Capacity | 512 |
| Parameter | Value |
|---|---|
| Hessian Approximation | Gauss-Newton |
| SQP type | real-time iterations |
|
|
|
|
|
|
| diag( |
|
| diag( |
|
| diag( |
|
|
|
diag( |
|
|
|
|
|
| Parameter | Value |
|---|---|
|
|
|
| diag( |
|
| diag( |