Skip to content

A hands-on collection of Jupyter notebooks exploring Matplotlib — from basic plots to advanced data visualizations. Covers line charts, bar graphs, scatter plots, subplots, annotations, styling, and real-world visualization techniques for data analysis and storytelling.

Notifications You must be signed in to change notification settings

shafaq-aslam/matplotlib-lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 

Repository files navigation

Matplotlib Lab Banner

🎨 Visualizing Data — The Matplotlib Way 📈

A hands-on journey through Matplotlib, turning raw data into insightful and visually appealing plots — the heart of data visualization in Python.


🧠 Tech Stack Badges


🧩 Mission Statement

This repository serves as my personal Matplotlib Lab 🧪 where I experiment, learn, and practice data visualization techniques.

Each notebook is a step toward mastering plotting fundamentals, customizing visuals, and real-world data storytelling using Python.


📂 Folder Structure

💡 Each folder inside the Matplotlib directory explores a unique aspect of Matplotlib — from basic plots to advanced visualization techniques.

matplotlib-lab/
│
└── Matplotlib/
    ├── Basic Matplotlib/
    │   ├── 2D_line_plot.ipynb
    │   ├── Bar_Chart.ipynb
    |   ├── Pie_chart.ipynb
    │   ├── Histogram.ipynb
    │   ├── Scatter_Plots.ipynb
    │   ├── barchart.jpg
    │   ├── line graph.png
    │   ├── sample_histogram.png
    │   ├── scatter-plot.png
    │   ├── pie-chart.svg
    │   └── histogram.svg
    │
    ├── Advanced/
    │   ├── Advanced_Scatter_Plots.ipynb
    │   ├── Subplots.ipynb
    │   ├── 3d_graphs_plotting.ipynb
    │   ├── heatmap.ipynb
    │   └── Pandas_plot.ipynb
    │
    └── Datasets/
        ├── IPL_Ball_by_Ball_2008_2022.csv
        ├── batsman_season_record.csv
        ├── batter.csv
        ├── gayle-175.csv
        ├── sharma-kohli.csv
        ├── vk.csv
        ├── iris.csv
        └── big-array.npy

🧮 Topics Covered

🔹 Basic Plots

Notebook Description
2D_line_plot.ipynb Introduction to line graphs, axis labels, markers, and styles.
Bar_Chart.ipynb Creating vertical & horizontal bar charts with customization.
Pie_chart.ipynb Making pie charts with labels, percentages, and explode effects.
Histogram.ipynb Understanding distributions using histograms and bins.
Scatter_Plots.ipynb Plotting relationships between variables with scatter plots.
barchart.jpg / line graph.png / sample_histogram.png / scatter-plot.png / pie-chart.svg / histogram.svg Sample visual outputs from the notebooks.

🔹 Advanced

Notebook Description
Advanced_Scatter_Plots.ipynb Enhanced scatter plots using size, color maps, and annotations.
Subplots.ipynb Creating multi-plot grids and complex layouts.
3d_graphs_plotting.ipynb Rendering 3D plots using Matplotlib’s mplot3d toolkit.
heatmap.ipynb Heatmaps for correlation, matrix visualization, and color maps.
Pandas_plot.ipynb Using Pandas' built-in .plot() for quick data visualizations.

🔹 Datasets

Dataset Description
IPL_Ball_by_Ball_2008_2022.csv Ball-by-ball IPL data (2008–2022).
batsman_season_record.csv Season-wise batting stats.
batter.csv Player-wise batting details.
gayle-175.csv Chris Gayle’s historic 175* innings data.
sharma-kohli.csv Sharma vs. Kohli performance comparison.
vk.csv Virat Kohli’s performance dataset.
iris.csv Classic Iris dataset for ML visualizations.
big-array.npy Large NumPy array for performance & plotting tests.

📚 Learning Resources


🧰 Tools & Environment

  • Python 3.x
  • Matplotlib
  • NumPy
  • Jupyter Notebook

✨ Author

Shafaq Aslam
📍 Passionate learner exploring Data Visualization, Data Science, and AI through hands-on projects.


🔖 Tags for SEO

matplotlib python data-visualization charts plots scatter-plot line-plot bar-chart histogram jupyter-notebook visual-storytelling data-analysis learning-lab


“Visualize your data, uncover its story, and let your plots speak louder than words.”

About

A hands-on collection of Jupyter notebooks exploring Matplotlib — from basic plots to advanced data visualizations. Covers line charts, bar graphs, scatter plots, subplots, annotations, styling, and real-world visualization techniques for data analysis and storytelling.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published