A hands-on journey through Matplotlib, turning raw data into insightful and visually appealing plots — the heart of data visualization in Python.
This repository serves as my personal Matplotlib Lab 🧪 where I experiment, learn, and practice data visualization techniques.
Each notebook is a step toward mastering plotting fundamentals, customizing visuals, and real-world data storytelling using Python.
💡 Each folder inside the
Matplotlibdirectory explores a unique aspect of Matplotlib — from basic plots to advanced visualization techniques.
matplotlib-lab/
│
└── Matplotlib/
├── Basic Matplotlib/
│ ├── 2D_line_plot.ipynb
│ ├── Bar_Chart.ipynb
| ├── Pie_chart.ipynb
│ ├── Histogram.ipynb
│ ├── Scatter_Plots.ipynb
│ ├── barchart.jpg
│ ├── line graph.png
│ ├── sample_histogram.png
│ ├── scatter-plot.png
│ ├── pie-chart.svg
│ └── histogram.svg
│
├── Advanced/
│ ├── Advanced_Scatter_Plots.ipynb
│ ├── Subplots.ipynb
│ ├── 3d_graphs_plotting.ipynb
│ ├── heatmap.ipynb
│ └── Pandas_plot.ipynb
│
└── Datasets/
├── IPL_Ball_by_Ball_2008_2022.csv
├── batsman_season_record.csv
├── batter.csv
├── gayle-175.csv
├── sharma-kohli.csv
├── vk.csv
├── iris.csv
└── big-array.npy
| Notebook | Description |
|---|---|
| 2D_line_plot.ipynb | Introduction to line graphs, axis labels, markers, and styles. |
| Bar_Chart.ipynb | Creating vertical & horizontal bar charts with customization. |
| Pie_chart.ipynb | Making pie charts with labels, percentages, and explode effects. |
| Histogram.ipynb | Understanding distributions using histograms and bins. |
| Scatter_Plots.ipynb | Plotting relationships between variables with scatter plots. |
| barchart.jpg / line graph.png / sample_histogram.png / scatter-plot.png / pie-chart.svg / histogram.svg | Sample visual outputs from the notebooks. |
| Notebook | Description |
|---|---|
| Advanced_Scatter_Plots.ipynb | Enhanced scatter plots using size, color maps, and annotations. |
| Subplots.ipynb | Creating multi-plot grids and complex layouts. |
| 3d_graphs_plotting.ipynb | Rendering 3D plots using Matplotlib’s mplot3d toolkit. |
| heatmap.ipynb | Heatmaps for correlation, matrix visualization, and color maps. |
| Pandas_plot.ipynb | Using Pandas' built-in .plot() for quick data visualizations. |
| Dataset | Description |
|---|---|
| IPL_Ball_by_Ball_2008_2022.csv | Ball-by-ball IPL data (2008–2022). |
| batsman_season_record.csv | Season-wise batting stats. |
| batter.csv | Player-wise batting details. |
| gayle-175.csv | Chris Gayle’s historic 175* innings data. |
| sharma-kohli.csv | Sharma vs. Kohli performance comparison. |
| vk.csv | Virat Kohli’s performance dataset. |
| iris.csv | Classic Iris dataset for ML visualizations. |
| big-array.npy | Large NumPy array for performance & plotting tests. |
- Python 3.x
- Matplotlib
- NumPy
- Jupyter Notebook
Shafaq Aslam
📍 Passionate learner exploring Data Visualization, Data Science, and AI through hands-on projects.
matplotlib python data-visualization charts plots scatter-plot line-plot bar-chart histogram jupyter-notebook visual-storytelling data-analysis learning-lab
“Visualize your data, uncover its story, and let your plots speak louder than words.”