This project analyzes β-convergence in economic growth between emerging and developed countries using GDP per capita data from 2004 to 2024. β-convergence examines whether poorer economies tend to grow faster than richer ones, potentially reducing income disparities over time.
β-convergence is estimated using cross-sectional regressions of average GDP per capita growth rates across four periods:
- Pre-Crisis (2004–2008)
- Recuperation (2009–2013)
- Stability (2014–2018)
- Recent (2019–2024)
The workflow combines Python for visualization and data handling with R for econometric inference.
- β < 0: Indicates convergence <=> Poorer economies growing faster
- β > 0: Indicates divergence <=> Richer economies maintaining growth advantage
- Data source: World Development Indicators (WDI)
- Sample: 58 countries (Emerging vs Developed)
- Approach:
- Period-average GDP per capita growth
- OLS β-convergence regressions
- Robust standard errors (HC1)
- Linear Probability Model for development status
World Development Indicators (WDI) - 2004-2024
-
Country Code: Unique identifier (e.g., USA, CHL, IND)
-
Group: Economic classification ('Emerging' or 'Developed')
-
Period Growth Rates:
- Pre-Crisis (2004-2008)
- Recuperation (2009-2013)
- Stability (2014-2018)
- Recent (2019-2024)
.
├── data/
│ ├── clean_data.csv
│ └── gdp_data.csv
├── visualizations/
│ ├── R_outputs/
│ └── python_outputs/
├── .gitignore
├── ETL.ipynb
├── install_r_packages.R
├── LICENSE
├── main.ipynb
├── README.md
├── regressions.R
├── requirements.txt
└── utils.py
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegressionlibrary(sandwich)
library(lmtest)- Import and clean WDI dataset
- Calculate average growth rates for each period
- Classify countries into Emerging/Developed groups
- Remove empty rows and standardize column names
- Tool: Python/Seaborn
- Purpose: Explore relationships between growth periods
- Output: Inter-period correlation overview
Tool: Python/Matplotlib
Three Key Comparisons:
- Stability (2014-2018) vs. Recuperation (2009-2013)
- Recent (2019-2024) vs. Pre-Crisis (2004-2008)
- Recuperation (2009-2013) vs. Pre-Crisis (2004-2008)
Each visualization includes regression lines and β coefficients
sreg1 <- lm(Stability..2014.2018. ~ Recuperation..2009.2013., data=df_wdi)
summary(sreg1)
coeftest(sreg1, vcov = vcovHC(sreg1, type="HC1"))sreg2 <- lm(Recent..2019.2024. ~ Pre_Crisis..2004.2008., data=df_wdi)
summary(sreg2)
coeftest(sreg2, vcov = vcovHC(sreg2, type="HC1"))sreg3 <- lm(Recuperation..2009.2013. ~ Pre_Crisis..2004.2008., data=df_wdi)
summary(sreg3)
coeftest(sreg3, vcov = vcovHC(sreg3, type="HC1"))The model is specified as:
mreg <- glm(developed ~ Pre_Crisis..2004.2008. +
Recuperation..2009.2013.,
data=df_wdi)
summary(mreg)
vif(mreg)
coeftest(mreg, vcov = vcovHC(mreg, type="HC1")) - Sample: 58 countries
- Dependent Variable:
Developedᵢ ∈ {1, 0}where:1= Developed economy0= Emerging economy
- Independent Variables:
PreCrisisGrowthᵢ: Average GDP growth (2004-2008)RecuperationGrowthᵢ: Average GDP growth (2009-2013)
- Error Term:
uᵢ,∀𝔼[uᵢ|Xᵢ] = 0
- Persistent divergence
- Positive β coefficients across all periods
- Faster-growing economies maintain their advantage
- Weak convergence in early periods
- Shift toward divergence in recent years
- No evidence of long-run income equalization
- Small cross-sectional sample (58 countries)
- No panel structure → potential omitted heterogeneity
- Linear Probability Model constraints
- σ-convergence not tested
The analysis reveals distinct growth patterns between emerging and developed economies, with emerging markets showing persistent divergence while developed economies transition from weak convergence to divergence in recent years. These findings provide valuable insights for economic policy formulation and international development strategies.