Skip to content

redhat-developer/aiquickstarttemplates

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Red Hat AI Quickstart Templates for Developer Hub

This repository contains Backstage/Red Hat Developer Hub templates for deploying Red Hat AI Quickstarts. These templates enable teams to quickly scaffold and deploy AI-powered applications on Red Hat OpenShift AI.

Overview

Red Hat AI Quickstarts are ready-to-run, industry-specific use cases designed to demonstrate how Red Hat AI products can power real-world solutions on enterprise-ready, open source infrastructure.

** Please ensure that you validate and update these template for your enterprise use. These are example templates and should not be used in production ***

Available Templates

All templates have 1:1 mapping with rh-ai-quickstart repositories

1. Enterprise RAG Chatbot ✅

Template ID: redhat-ai-enterprise-rag-chatbot Repository: rh-ai-quickstart/RAG

Deploy a Retrieval-Augmented Generation chatbot with company-specific data integration.

Features:

  • Local (Podman/Ollama) and OpenShift (Helm/vLLM) deployment modes
  • PGVector (PostgreSQL) for vector storage
  • LlamaStack framework with Ollama
  • Streamlit UI for chat interface
  • Docling for advanced PDF processing
  • Multiple data sources (GitHub, S3/MinIO, URLs)
  • Llama 3.2-3B-Instruct or larger models
  • all-MiniLM-L6-v2 embeddings
  • Kubeflow Pipelines for ingestion (optional)

Technologies:

  • Vector DB: PGVector (PostgreSQL)
  • LLM: Llama 3.2 3B / 3.1 8B/70B
  • Embedding: all-MiniLM-L6-v2
  • Framework: LlamaStack
  • UI: Streamlit
  • Deployment: Podman Compose (local) or Helm (OpenShift)

Hardware: CPU/GPU (OpenShift), Intel Gaudi, NVIDIA GPU support


2. IT Self-Service Agent ✅

Template ID: redhat-ai-it-self-service-agent Repository: rh-ai-quickstart/it-self-service-agent

Deploy an AI-powered self-service agent for IT process automation using agentic AI patterns.

Features:

  • Llama 3 70B integration with LangGraph
  • Testing mode (mock eventing) and production mode (Kafka + Knative)
  • Safety guardrails (Llama Guard 3, PromptGuard)
  • Multi-channel support (Slack, ServiceNow, CLI, Email)
  • OpenTelemetry distributed tracing
  • DeepEval framework for testing
  • PostgreSQL for conversation state
  • Request manager and specialist agent pattern

Technologies:

  • LangGraph (multi-step prompting)
  • Llama 3 70B
  • Kafka & Knative Eventing
  • OpenTelemetry
  • Model Context Protocol (MCP)
  • PostgreSQL

Documentation: AI quickstart: Self-service agent for IT process automation

Deployment Time: 60-90 minutes (testing), 2-3 hours (production)


3. LLM CPU Serving - HR Assistant ✅

Template ID: redhat-ai-llm-cpu-serving Repository: rh-ai-quickstart/llm-cpu-serving

AI-powered HR Assistant using vLLM on CPU (no GPU required).

Features:

  • TinyLlama 1.1B model optimized for CPU
  • AnythingLLM workbench chat interface
  • vLLM CPU runtime with OpenAI-compatible API
  • Helm chart deployment on OpenShift AI
  • Pre-configured "Assistant to the HR Representative" workspace
  • Document-aware conversations with policy citations

Technologies:

  • Model: TinyLlama 1.1B
  • Runtime: vLLM CPU
  • UI: AnythingLLM workbench
  • Deployment: Helm
  • Container: quay.io/rh-aiservices-bu/vllm-cpu-openai-ubi9

Resource Requirements:

  • Minimum: 2 cores, 4GB RAM, 5GB storage
  • Recommended: 8 cores, 8GB RAM (Intel AVX-512 preferred)

Prerequisites:

  • OpenShift 4.16.24+
  • OpenShift AI 2.16.2+
  • Service Mesh & Serverless

Use Case: Financial services HR representatives seeking policy guidance


4. AI Virtual Agent Platform ✅

Template ID: redhat-ai-virtual-agent Repository: rh-ai-quickstart/ai-virtual-agent

Conversational AI agent platform with RAG, knowledge bases, and MCP server integration.

Features:

  • React + PatternFly frontend UI
  • FastAPI backend server
  • LlamaStack AI platform (Ollama llama3.2:3b)
  • PostgreSQL + pgvector for knowledge bases
  • MinIO for file attachments
  • Model Context Protocol (MCP) server
  • Web search tool integration
  • Safety guardrails and content filtering
  • Agent management and configuration
  • Streaming conversations with history
  • Local (Docker Compose) and OpenShift deployment

Technologies:

  • Frontend: React with PatternFly
  • Backend: FastAPI
  • AI: LlamaStack with Ollama
  • Database: PostgreSQL + pgvector
  • Storage: MinIO
  • MCP: Model Context Protocol servers

Prerequisites (OpenShift):

  • Cluster admin access for OAuth
  • Red Hat OpenShift AI
  • Hugging Face token (optional)

Use Cases: Customer service automation, IT support agents, knowledge base Q&A


5. AI Observability Summarizer ✅

Template ID: redhat-ai-observability-summarizer Repository: rh-ai-quickstart/ai-observability-summarizer

Transform complex OpenShift AI metrics into actionable business insights.

Features:

  • Natural language queries ("How is my GPU performing?")
  • Multi-dashboard Streamlit interface (vLLM, OpenShift, Chat, GPU)
  • AI-powered Slack alerts and notifications
  • HTML/PDF/Markdown report generation
  • Distributed tracing with Tempo
  • Centralized logging with Loki
  • OpenTelemetry Collector integration
  • GPU & vLLM performance monitoring
  • MCP server for Claude Desktop/Cursor
  • Prometheus/Thanos metrics collection

Technologies:

  • LLM: Llama 3.2 (1B/3B) or 3.1 (8B/70B)
  • UI: Streamlit multi-dashboard
  • Backend: Llama Stack
  • Metrics: Prometheus/Thanos
  • Tracing: Tempo + OpenTelemetry
  • Logging: Loki
  • Storage: MinIO

Prerequisites:

  • OpenShift 4.16.24+
  • OpenShift AI 2.16.2+
  • Service Mesh & Serverless
  • Prometheus/Thanos monitoring

Use Cases: AI operations monitoring, resource optimization, business ROI tracking


6. Generic AI Quickstart Template

Template ID: redhat-ai-quickstart-generic

A flexible template that can be adapted for any Red Hat AI quickstart with customizable parameters.

Features:

  • Support for multiple quickstart repositories
  • Configurable OpenShift deployment
  • LLM model endpoint configuration
  • Optional GitHub repository creation
  • Kubernetes manifest generation

Use Cases:

  • Experimenting with different AI quickstarts
  • Quick prototyping
  • Custom AI application deployments

Quick Start

Get started in 5 minutes! See QUICKSTART.md for detailed instructions.

1. Register Templates in Developer Hub

Navigate to your Developer Hub instance and register this repository:

https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml

2. Create Your First AI Quickstart

  1. Go to Create in Developer Hub
  2. Select LLM CPU Serving (easiest to start)
  3. Fill in the form with your project details
  4. Click Create

3. Deploy to OpenShift

# Clone the generated repository
git clone <your-generated-repo-url>
cd <project-name>

# Deploy to OpenShift
oc login --token=<token> --server=<cluster-url>
oc new-project <namespace>
oc apply -k manifests/

4. Test Your Deployment

# Get the route URL
export APP_URL=$(oc get route <app-name> -o jsonpath='{.spec.host}')

# Test the endpoint
curl https://$APP_URL/health

Installation

Prerequisites

  1. Red Hat Developer Hub (Backstage) installed
  2. OpenShift Cluster (4.17 or later recommended)
  3. OpenShift AI operator installed
  4. GitHub account for repository creation (optional)
  5. Git client

Step 1: Register Templates in Developer Hub

Option A: Direct Registration (Recommended)

  1. Navigate to your Developer Hub instance
  2. Go to CreateRegister Existing Component
  3. Enter the URL to this repository's catalog-info.yaml:
    https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml
    
  4. Click Analyze and then Import

Option B: App Config Registration

Add to your Developer Hub app-config.yaml:

catalog:
  locations:
    - type: url
      target: https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml
      rules:
        - allow: [Location, Template]

Step 2: Configure Integrations (Optional)

For full functionality, configure these integrations in your app-config.yaml:

integrations:
  github:
    - host: github.com
      token: ${GITHUB_TOKEN}

kubernetes:
  serviceLocatorMethod:
    type: 'multiTenant'
  clusterLocatorMethods:
    - type: 'config'
      clusters:
        - url: https://api.cluster.example.com:6443
          name: production
          authProvider: 'serviceAccount'
          skipTLSVerify: false

Step 3: Set Up Secrets

Create a Kubernetes secret for sensitive credentials:

kubectl create secret generic ai-quickstart-credentials \
  --from-literal=github-token=<your-token> \
  --from-literal=llm-api-key=<your-key> \
  -n backstage

Template Parameters

Common Parameters (All Templates)

Parameter Description Required Default
name Project name Yes -
owner Team/user owner Yes -
description Purpose description No -
openshiftCluster OpenShift API URL Yes -
namespace Target namespace Yes Template-specific
createGitRepo Create GitHub repo No true

Template-Specific Parameters

See individual template documentation in the templates directory for complete parameter lists.

Example configurations are available in the examples directory.


Architecture

Template Structure

templates/
├── generic-ai-quickstart/
│   ├── template.yaml          # Template definition
│   └── skeleton/              # Template files
│       └── catalog-info.yaml  # Backstage catalog entry
├── it-self-service-agent/
│   └── template.yaml
├── product-recommender/
│   └── template.yaml
├── enterprise-rag-chatbot/
│   └── template.yaml
└── llm-cpu-serving/
    └── template.yaml

Deployment Flow

  1. Template Selection: User chooses template in Developer Hub
  2. Parameter Configuration: User fills in required/optional parameters
  3. Scaffolding: Template generates project structure
  4. Repository Creation: (Optional) New GitHub repository created
  5. Manifest Generation: Kubernetes manifests customized
  6. Catalog Registration: Component registered in Backstage catalog
  7. Deployment: User deploys to OpenShift using generated manifests

Examples

Example 1: Deploy Enterprise RAG Chatbot

# RAG chatbot with PGVector
# Local (Podman) or OpenShift (Helm)
# Data sources: GitHub, S3/MinIO, URLs
# Time: 10-15 minutes

See examples/rag-chatbot-example-values.yaml

Example 2: Deploy IT Self-Service Agent

# Agentic AI for IT automation
# Requires: Llama 3 70B endpoint
# Integrations: Slack, ServiceNow
# Time: 60-90 minutes

See examples/it-agent-example-values.yaml

Example 3: Deploy LLM CPU Serving - HR Assistant

# HR Assistant on CPU - no GPU required
# Model: TinyLlama 1.1B with vLLM
# UI: AnythingLLM workbench
# Time: 5-10 minutes

See examples/llm-cpu-example-values.yaml

Example 4: Deploy AI Virtual Agent

# Conversational AI platform
# React + FastAPI + LlamaStack
# Knowledge bases with RAG
# Time: 10-15 minutes

See examples/ai-virtual-agent-example-values.yaml

Example 5: Deploy AI Observability Summarizer

# AI-powered observability platform
# Streamlit multi-dashboard interface
# Natural language metrics queries
# Time: 10-15 minutes

See examples/ai-observability-summarizer-example-values.yaml


Customization

Creating Custom Templates

You can create custom templates by copying and modifying existing ones:

  1. Copy a template directory:

    cp -r templates/generic-ai-quickstart templates/my-custom-template
  2. Edit template.yaml:

    • Update metadata.name and metadata.title
    • Modify parameters as needed
    • Adjust steps for your workflow
  3. Add to catalog-info.yaml:

    targets:
      - ./templates/my-custom-template/template.yaml

Modifying Existing Templates

To modify parameters or steps:

  1. Edit the template.yaml file
  2. Test locally using Backstage CLI:
    backstage-cli create --template ./templates/my-template/template.yaml
  3. Commit and push changes
  4. Templates will auto-update in Developer Hub

Troubleshooting

Template Not Appearing

Problem: Template doesn't show in Developer Hub catalog

Solutions:

  • Verify catalog-info.yaml is accessible
  • Check Developer Hub logs for parsing errors
  • Ensure kind: Template is set correctly
  • Refresh catalog: SettingsCatalogRefresh

GitHub Integration Issues

Problem: Cannot create GitHub repositories

Solutions:

  • Verify GITHUB_TOKEN has repo scope
  • Check token is configured in app-config.yaml
  • Ensure allowedHosts includes github.com

OpenShift Deployment Failures

Problem: Manifests fail to apply

Solutions:

  • Verify OpenShift AI operators are installed
  • Check namespace exists or create it
  • Ensure service account has required permissions
  • Review secret names match generated manifests

Model Endpoint Issues

Problem: LLM endpoint not accessible

Solutions:

  • Verify endpoint URL is correct
  • Check API key is valid
  • Ensure network policies allow egress
  • Test endpoint manually: curl -H "Authorization: Bearer $API_KEY" $ENDPOINT

Best Practices

Security

  1. Never commit secrets to templates or repositories
  2. Use Kubernetes Secrets for sensitive data
  3. Enable RBAC for namespace isolation
  4. Use private repositories for production deployments
  5. Enable API authentication for public endpoints

Resource Management

  1. Set appropriate resource requests/limits
  2. Use HPA (Horizontal Pod Autoscaler) for production
  3. Monitor resource usage with OpenShift monitoring
  4. Consider node affinity for GPU/special hardware

CI/CD Integration

  1. Use ArgoCD or Flux for GitOps workflows
  2. Implement pre-commit hooks for manifest validation
  3. Set up automated testing for model endpoints
  4. Use staging environments before production

Cost Optimization

  1. Use CPU serving for low-traffic workloads
  2. Enable model caching to reduce inference costs
  3. Implement request batching where applicable
  4. Consider spot instances for training workloads

Contributing

We welcome contributions to improve these templates!

How to Contribute

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/my-improvement
  3. Make your changes
  4. Test thoroughly
  5. Submit a pull request

Template Guidelines

  • Follow existing template structure
  • Include comprehensive parameter descriptions
  • Add validation where appropriate
  • Document all customization points
  • Include example values

Support

Resources

Community


License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.


Acknowledgments

Based on official Red Hat AI Quickstarts (1:1 mapping):

Built for Red Hat Developer Hub (Backstage).

All templates are verified against real rh-ai-quickstart repositories to ensure accuracy.


What's New

Version 2.0.0 (2026-02-04)

  • Verified 1:1 mapping with real rh-ai-quickstart repositories
  • ✅ Enterprise RAG Chatbot - Based on rh-ai-quickstart/RAG
  • ✅ IT Self-Service Agent - Verified against real repo
  • ✅ LLM CPU Serving - Updated to match HR Assistant implementation
  • ✅ NEW: AI Virtual Agent - Conversational AI platform
  • ✅ NEW: AI Observability Summarizer - AI-powered monitoring
  • ✅ Generic template for flexibility
  • All templates match actual quickstart implementations
  • Updated documentation with features and prerequisites
  • Example values for all 5 quickstarts

Version 1.0.0 (2026-02-04)

  • Initial release

About

Red Hat AI Quick Start - Red Hat Developer Template

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •