This repository contains Backstage/Red Hat Developer Hub templates for deploying Red Hat AI Quickstarts. These templates enable teams to quickly scaffold and deploy AI-powered applications on Red Hat OpenShift AI.
Red Hat AI Quickstarts are ready-to-run, industry-specific use cases designed to demonstrate how Red Hat AI products can power real-world solutions on enterprise-ready, open source infrastructure.
** Please ensure that you validate and update these template for your enterprise use. These are example templates and should not be used in production ***
All templates have 1:1 mapping with rh-ai-quickstart repositories
Template ID: redhat-ai-enterprise-rag-chatbot
Repository: rh-ai-quickstart/RAG
Deploy a Retrieval-Augmented Generation chatbot with company-specific data integration.
Features:
- Local (Podman/Ollama) and OpenShift (Helm/vLLM) deployment modes
- PGVector (PostgreSQL) for vector storage
- LlamaStack framework with Ollama
- Streamlit UI for chat interface
- Docling for advanced PDF processing
- Multiple data sources (GitHub, S3/MinIO, URLs)
- Llama 3.2-3B-Instruct or larger models
- all-MiniLM-L6-v2 embeddings
- Kubeflow Pipelines for ingestion (optional)
Technologies:
- Vector DB: PGVector (PostgreSQL)
- LLM: Llama 3.2 3B / 3.1 8B/70B
- Embedding: all-MiniLM-L6-v2
- Framework: LlamaStack
- UI: Streamlit
- Deployment: Podman Compose (local) or Helm (OpenShift)
Hardware: CPU/GPU (OpenShift), Intel Gaudi, NVIDIA GPU support
Template ID: redhat-ai-it-self-service-agent
Repository: rh-ai-quickstart/it-self-service-agent
Deploy an AI-powered self-service agent for IT process automation using agentic AI patterns.
Features:
- Llama 3 70B integration with LangGraph
- Testing mode (mock eventing) and production mode (Kafka + Knative)
- Safety guardrails (Llama Guard 3, PromptGuard)
- Multi-channel support (Slack, ServiceNow, CLI, Email)
- OpenTelemetry distributed tracing
- DeepEval framework for testing
- PostgreSQL for conversation state
- Request manager and specialist agent pattern
Technologies:
- LangGraph (multi-step prompting)
- Llama 3 70B
- Kafka & Knative Eventing
- OpenTelemetry
- Model Context Protocol (MCP)
- PostgreSQL
Documentation: AI quickstart: Self-service agent for IT process automation
Deployment Time: 60-90 minutes (testing), 2-3 hours (production)
Template ID: redhat-ai-llm-cpu-serving
Repository: rh-ai-quickstart/llm-cpu-serving
AI-powered HR Assistant using vLLM on CPU (no GPU required).
Features:
- TinyLlama 1.1B model optimized for CPU
- AnythingLLM workbench chat interface
- vLLM CPU runtime with OpenAI-compatible API
- Helm chart deployment on OpenShift AI
- Pre-configured "Assistant to the HR Representative" workspace
- Document-aware conversations with policy citations
Technologies:
- Model: TinyLlama 1.1B
- Runtime: vLLM CPU
- UI: AnythingLLM workbench
- Deployment: Helm
- Container: quay.io/rh-aiservices-bu/vllm-cpu-openai-ubi9
Resource Requirements:
- Minimum: 2 cores, 4GB RAM, 5GB storage
- Recommended: 8 cores, 8GB RAM (Intel AVX-512 preferred)
Prerequisites:
- OpenShift 4.16.24+
- OpenShift AI 2.16.2+
- Service Mesh & Serverless
Use Case: Financial services HR representatives seeking policy guidance
Template ID: redhat-ai-virtual-agent
Repository: rh-ai-quickstart/ai-virtual-agent
Conversational AI agent platform with RAG, knowledge bases, and MCP server integration.
Features:
- React + PatternFly frontend UI
- FastAPI backend server
- LlamaStack AI platform (Ollama llama3.2:3b)
- PostgreSQL + pgvector for knowledge bases
- MinIO for file attachments
- Model Context Protocol (MCP) server
- Web search tool integration
- Safety guardrails and content filtering
- Agent management and configuration
- Streaming conversations with history
- Local (Docker Compose) and OpenShift deployment
Technologies:
- Frontend: React with PatternFly
- Backend: FastAPI
- AI: LlamaStack with Ollama
- Database: PostgreSQL + pgvector
- Storage: MinIO
- MCP: Model Context Protocol servers
Prerequisites (OpenShift):
- Cluster admin access for OAuth
- Red Hat OpenShift AI
- Hugging Face token (optional)
Use Cases: Customer service automation, IT support agents, knowledge base Q&A
Template ID: redhat-ai-observability-summarizer
Repository: rh-ai-quickstart/ai-observability-summarizer
Transform complex OpenShift AI metrics into actionable business insights.
Features:
- Natural language queries ("How is my GPU performing?")
- Multi-dashboard Streamlit interface (vLLM, OpenShift, Chat, GPU)
- AI-powered Slack alerts and notifications
- HTML/PDF/Markdown report generation
- Distributed tracing with Tempo
- Centralized logging with Loki
- OpenTelemetry Collector integration
- GPU & vLLM performance monitoring
- MCP server for Claude Desktop/Cursor
- Prometheus/Thanos metrics collection
Technologies:
- LLM: Llama 3.2 (1B/3B) or 3.1 (8B/70B)
- UI: Streamlit multi-dashboard
- Backend: Llama Stack
- Metrics: Prometheus/Thanos
- Tracing: Tempo + OpenTelemetry
- Logging: Loki
- Storage: MinIO
Prerequisites:
- OpenShift 4.16.24+
- OpenShift AI 2.16.2+
- Service Mesh & Serverless
- Prometheus/Thanos monitoring
Use Cases: AI operations monitoring, resource optimization, business ROI tracking
Template ID: redhat-ai-quickstart-generic
A flexible template that can be adapted for any Red Hat AI quickstart with customizable parameters.
Features:
- Support for multiple quickstart repositories
- Configurable OpenShift deployment
- LLM model endpoint configuration
- Optional GitHub repository creation
- Kubernetes manifest generation
Use Cases:
- Experimenting with different AI quickstarts
- Quick prototyping
- Custom AI application deployments
Get started in 5 minutes! See QUICKSTART.md for detailed instructions.
Navigate to your Developer Hub instance and register this repository:
https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml
- Go to Create in Developer Hub
- Select LLM CPU Serving (easiest to start)
- Fill in the form with your project details
- Click Create
# Clone the generated repository
git clone <your-generated-repo-url>
cd <project-name>
# Deploy to OpenShift
oc login --token=<token> --server=<cluster-url>
oc new-project <namespace>
oc apply -k manifests/# Get the route URL
export APP_URL=$(oc get route <app-name> -o jsonpath='{.spec.host}')
# Test the endpoint
curl https://$APP_URL/health- Red Hat Developer Hub (Backstage) installed
- OpenShift Cluster (4.17 or later recommended)
- OpenShift AI operator installed
- GitHub account for repository creation (optional)
- Git client
- Navigate to your Developer Hub instance
- Go to Create → Register Existing Component
- Enter the URL to this repository's
catalog-info.yaml:https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml - Click Analyze and then Import
Add to your Developer Hub app-config.yaml:
catalog:
locations:
- type: url
target: https://github.com/redhat-developer/aiquickstarttemplates/blob/main/catalog-info.yaml
rules:
- allow: [Location, Template]For full functionality, configure these integrations in your app-config.yaml:
integrations:
github:
- host: github.com
token: ${GITHUB_TOKEN}
kubernetes:
serviceLocatorMethod:
type: 'multiTenant'
clusterLocatorMethods:
- type: 'config'
clusters:
- url: https://api.cluster.example.com:6443
name: production
authProvider: 'serviceAccount'
skipTLSVerify: falseCreate a Kubernetes secret for sensitive credentials:
kubectl create secret generic ai-quickstart-credentials \
--from-literal=github-token=<your-token> \
--from-literal=llm-api-key=<your-key> \
-n backstage| Parameter | Description | Required | Default |
|---|---|---|---|
name |
Project name | Yes | - |
owner |
Team/user owner | Yes | - |
description |
Purpose description | No | - |
openshiftCluster |
OpenShift API URL | Yes | - |
namespace |
Target namespace | Yes | Template-specific |
createGitRepo |
Create GitHub repo | No | true |
See individual template documentation in the templates directory for complete parameter lists.
Example configurations are available in the examples directory.
templates/
├── generic-ai-quickstart/
│ ├── template.yaml # Template definition
│ └── skeleton/ # Template files
│ └── catalog-info.yaml # Backstage catalog entry
├── it-self-service-agent/
│ └── template.yaml
├── product-recommender/
│ └── template.yaml
├── enterprise-rag-chatbot/
│ └── template.yaml
└── llm-cpu-serving/
└── template.yaml
- Template Selection: User chooses template in Developer Hub
- Parameter Configuration: User fills in required/optional parameters
- Scaffolding: Template generates project structure
- Repository Creation: (Optional) New GitHub repository created
- Manifest Generation: Kubernetes manifests customized
- Catalog Registration: Component registered in Backstage catalog
- Deployment: User deploys to OpenShift using generated manifests
# RAG chatbot with PGVector
# Local (Podman) or OpenShift (Helm)
# Data sources: GitHub, S3/MinIO, URLs
# Time: 10-15 minutesSee examples/rag-chatbot-example-values.yaml
# Agentic AI for IT automation
# Requires: Llama 3 70B endpoint
# Integrations: Slack, ServiceNow
# Time: 60-90 minutesSee examples/it-agent-example-values.yaml
# HR Assistant on CPU - no GPU required
# Model: TinyLlama 1.1B with vLLM
# UI: AnythingLLM workbench
# Time: 5-10 minutesSee examples/llm-cpu-example-values.yaml
# Conversational AI platform
# React + FastAPI + LlamaStack
# Knowledge bases with RAG
# Time: 10-15 minutesSee examples/ai-virtual-agent-example-values.yaml
# AI-powered observability platform
# Streamlit multi-dashboard interface
# Natural language metrics queries
# Time: 10-15 minutesSee examples/ai-observability-summarizer-example-values.yaml
You can create custom templates by copying and modifying existing ones:
-
Copy a template directory:
cp -r templates/generic-ai-quickstart templates/my-custom-template
-
Edit
template.yaml:- Update
metadata.nameandmetadata.title - Modify parameters as needed
- Adjust steps for your workflow
- Update
-
Add to
catalog-info.yaml:targets: - ./templates/my-custom-template/template.yaml
To modify parameters or steps:
- Edit the
template.yamlfile - Test locally using Backstage CLI:
backstage-cli create --template ./templates/my-template/template.yaml
- Commit and push changes
- Templates will auto-update in Developer Hub
Problem: Template doesn't show in Developer Hub catalog
Solutions:
- Verify
catalog-info.yamlis accessible - Check Developer Hub logs for parsing errors
- Ensure
kind: Templateis set correctly - Refresh catalog: Settings → Catalog → Refresh
Problem: Cannot create GitHub repositories
Solutions:
- Verify
GITHUB_TOKENhasreposcope - Check token is configured in
app-config.yaml - Ensure
allowedHostsincludesgithub.com
Problem: Manifests fail to apply
Solutions:
- Verify OpenShift AI operators are installed
- Check namespace exists or create it
- Ensure service account has required permissions
- Review secret names match generated manifests
Problem: LLM endpoint not accessible
Solutions:
- Verify endpoint URL is correct
- Check API key is valid
- Ensure network policies allow egress
- Test endpoint manually:
curl -H "Authorization: Bearer $API_KEY" $ENDPOINT
- Never commit secrets to templates or repositories
- Use Kubernetes Secrets for sensitive data
- Enable RBAC for namespace isolation
- Use private repositories for production deployments
- Enable API authentication for public endpoints
- Set appropriate resource requests/limits
- Use HPA (Horizontal Pod Autoscaler) for production
- Monitor resource usage with OpenShift monitoring
- Consider node affinity for GPU/special hardware
- Use ArgoCD or Flux for GitOps workflows
- Implement pre-commit hooks for manifest validation
- Set up automated testing for model endpoints
- Use staging environments before production
- Use CPU serving for low-traffic workloads
- Enable model caching to reduce inference costs
- Implement request batching where applicable
- Consider spot instances for training workloads
We welcome contributions to improve these templates!
- Fork the repository
- Create a feature branch:
git checkout -b feature/my-improvement - Make your changes
- Test thoroughly
- Submit a pull request
- Follow existing template structure
- Include comprehensive parameter descriptions
- Add validation where appropriate
- Document all customization points
- Include example values
- Red Hat AI Quickstarts Documentation: https://docs.redhat.com/en/learn/ai-quickstarts
- Red Hat Developer Hub Documentation: https://docs.redhat.com/en/documentation/red_hat_developer_hub
- OpenShift AI Documentation: https://docs.redhat.com/en/documentation/red_hat_openshift_ai
- Backstage Documentation: https://backstage.io/docs
- Red Hat Developers: https://developers.redhat.com
- GitHub Issues: https://github.com/redhat-developer/aiquickstarttemplates/issues
- Red Hat Developer Forums: https://developers.redhat.com/community
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Based on official Red Hat AI Quickstarts (1:1 mapping):
- Enterprise RAG: https://github.com/rh-ai-quickstart/RAG
- IT Self-Service Agent: https://github.com/rh-ai-quickstart/it-self-service-agent
- LLM CPU Serving: https://github.com/rh-ai-quickstart/llm-cpu-serving
- AI Virtual Agent: https://github.com/rh-ai-quickstart/ai-virtual-agent
- AI Observability Summarizer: https://github.com/rh-ai-quickstart/ai-observability-summarizer
- Red Hat AI Services: https://github.com/redhat-ai-services
Built for Red Hat Developer Hub (Backstage).
All templates are verified against real rh-ai-quickstart repositories to ensure accuracy.
- ✅ Verified 1:1 mapping with real rh-ai-quickstart repositories
- ✅ Enterprise RAG Chatbot - Based on rh-ai-quickstart/RAG
- ✅ IT Self-Service Agent - Verified against real repo
- ✅ LLM CPU Serving - Updated to match HR Assistant implementation
- ✅ NEW: AI Virtual Agent - Conversational AI platform
- ✅ NEW: AI Observability Summarizer - AI-powered monitoring
- ✅ Generic template for flexibility
- All templates match actual quickstart implementations
- Updated documentation with features and prerequisites
- Example values for all 5 quickstarts
- Initial release