We present RobusTok, a new image tokenizer with a two-stage training scheme:
Main training → constructs a robust latent space.
Post-training → aligns the generator’s latent distribution with its image space.
- 🚀 Better generative quality: gFID 1.60 → 1.36.
- 🔑 Generalizability: applicable to both autoregressive & diffusion models.
- ⚡ Efficiency: strong results with only ~400M generative models.
| Generator \ Tokenizer | RobusTok w/o. P.T(weights) | RobusTok w/. P.T (weights) |
|---|---|---|
| Base (weights) | gFID = 1.83 | gFID = 1.60 |
| Large (weights) | gFID = 1.60 | gFID = 1.36 |
- (2025.09.16) Paper released in Arxiv.
- (2025.09.18) Code and checkpoint are released. Preparing for PFID calculation
Install all packages as
conda env create -f environment.yml
We download the ImageNet2012 from the website and collect it as
ImageNet2012
├── train
└── val
If you want to train or finetune on other datasets, collect them in the format that ImageFolder (pytorch's ImageFolder) can recognize.
Dataset
├── train
│ ├── Class1
│ │ ├── 1.png
│ │ └── 2.png
│ ├── Class2
│ │ ├── 1.png
│ │ └── 2.png
├── val
Please login to Wandb first using
wandb login
rFID will be automatically evaluated and reported on Wandb. The checkpoint with the best rFID on the val set will be saved. We provide basic configurations in the "configs" folder.
Warning❗️: You may want to modify the metric to save models as rFID is not closely correlated to gFID. PSNR and SSIM are also good choices.
torchrun --nproc_per_node=8 tokenizer/tokenizer_image/main_train.py --config configs/main-train.yaml
Please modify the configuration file as needed for your specific dataset. We list some important ones here.
vq_ckpt: ckpt_best.pt # resume
cloud_save_path: output/exp-xx # output dir
data_path: ImageNet2012/train # training set dir
val_data_path: ImageNet2012/val # val set dir
enc_tuning_method: 'full' # ['full', 'lora', 'frozen']
dec_tuning_method: 'full' # ['full', 'lora', 'frozen']
codebook_embed_dim: 32 # codebook dim
codebook_size: 4096 # codebook size
product_quant: 1 # vanilla VQ
v_patch_nums: [16,] # latent resolution for RQ ([16,] is equivalent to vanilla VQ)
codebook_drop: 0.1 # quantizer dropout rate if RQ is applied
semantic_guide: dinov2 # ['none', 'dinov2', 'clip']
disc_epoch_start: 56 # epoch that discriminator starts
disc_type: dinodisc # discriminator type
disc_adaptive_weight: true # adaptive weight for discriminator loss
ema: true # use ema to update the model
num_latent_code: 256 # latent token number (must equals to the v_patch_nums[-1] ** 2)
We follow RAR to pretokenize the whole dataset for speed-up the training process. We have uploaded it so you can train RobusTok-RAR directly.
# training code for rar-b
accelerate launch scripts/train_rar.py experiment.project="rar" experiment.name="rar_b" experiment.output_dir="rar_b" model.generator.hidden_size=768 model.generator.num_hidden_layers=24 model.generator.num_attention_heads=16 model.generator.intermediate_size=3072 config=configs/generator/rar.yaml dataset.params.pretokenization=/path/to/pretokenized.jsonl model.vq_ckpt=/path/to/RobustTok.pt
# training code for rar-l
accelerate launch scripts/train_rar.py experiment.project="rar" experiment.name="rar_l" experiment.output_dir="rar_l" model.generator.hidden_size=1024 model.generator.num_hidden_layers=24 model.generator.num_attention_heads=16 model.generator.intermediate_size=4096 config=configs/generator/rar.yaml dataset.params.pretokenization=/path/to/pretokenized.jsonl model.vq_ckpt=/path/to/RobustTok.pt
For post-training, we need to (1) prepare paired dataset and (2) post-train our decoder to align with generated latent space
You can follow our code with your desired dataset / σ / number to generate data
torchrun --nnodes=1 --nproc_per_node=8 --rdzv-endpoint=localhost:9999 post_train_data.py config=configs/generator/rar.yaml \
experiment.output_dir="/path/to/data-folder" \
experiment.generator_checkpoint="rar_b.bin" \
model.vq_ckpt=/path/to/RobustTok.pt \
model.generator.hidden_size=768 \
model.generator.num_hidden_layers=24 \
model.generator.num_attention_heads=16 \
model.generator.intermediate_size=3072 \
model.generator.randomize_temperature=1.02 \
model.generator.guidance_scale=6.0 \
model.generator.guidance_scale_pow=1.15 \
--sigma 0.7 --data-path /path/to/imagenet --num_samples /number/of/generate
torchrun --nproc_per_node=8 tokenizer/tokenizer_image/xqgan_post_train.py --config configs/post-train.yaml --data-path /path/to/data-folder --pair-set /path/to/imagenet --vq-ckpt /path/to/main-train/ckpt
# Reproducing RAR-B
torchrun --nnodes=1 --nproc_per_node=8 --rdzv-endpoint=localhost:9999 sample_imagenet_rar.py config=configs/generator/rar.yaml \
experiment.output_dir="rar_b" \
experiment.generator_checkpoint="rar_b.bin" \
model.vq_ckpt=/path/to/RobustTok.pt \
model.generator.hidden_size=768 \
model.generator.num_hidden_layers=24 \
model.generator.num_attention_heads=16 \
model.generator.intermediate_size=3072 \
model.generator.randomize_temperature=1.02 \
model.generator.guidance_scale=6.0 \
model.generator.guidance_scale_pow=1.15
# Run eval script. The result FID should be ~1.83 before post-training and ~1.60 after post-training
python3 evaluator.py VIRTUAL_imagenet256_labeled.npz rar_b.npz
# Reproducing RAR-L
torchrun --nnodes=1 --nproc_per_node=8 --rdzv-endpoint=localhost:9999 sample_imagenet_rar.py config=configs/generator/rar.yaml \
experiment.output_dir="rar_l" \
experiment.generator_checkpoint="rar_l.bin" \
model.vq_ckpt=/path/to/RobustTok.pt \
model.generator.hidden_size=1024 \
model.generator.num_hidden_layers=24 \
model.generator.num_attention_heads=16 \
model.generator.intermediate_size=4096 \
model.generator.randomize_temperature=1.04 \
model.generator.guidance_scale=6.75 \
model.generator.guidance_scale_pow=1.01
# Run eval script. The result FID should be ~1.60 before post-training and ~1.36 after post-training
python3 evaluator.py VIRTUAL_imagenet256_labeled.npz rar_l.npz
visualization of 256×256 image generation before (top) and after (bottom) post-training. Three improvements are observed: (a) OOD mitigation, (b) Color fidelity, (c) detail refinement.
If our work assists your research, feel free to give us a star ⭐ or cite us using
@misc{qiu2025imagetokenizerneedsposttraining,
title={Image Tokenizer Needs Post-Training},
author={Kai Qiu and Xiang Li and Hao Chen and Jason Kuen and Xiaohao Xu and Jiuxiang Gu and Yinyi Luo and Bhiksha Raj and Zhe Lin and Marios Savvides},
year={2025},
eprint={2509.12474},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.12474},
}
