Skip to content

projnanda/agentfacts-format

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

AgentFacts Format

A standardized metadata schema for describing AI agents on the web, enabling discovery, interoperability, and trust verification in the agentic ecosystem.

Overview

The AgentFacts format provides a comprehensive way to describe AI agents with machine-readable metadata, including their capabilities, endpoints, performance metrics, and trust credentials. This enables automated discovery and integration of agents across different platforms and providers.

Key Features

  • Universal Agent Identity: Unique identifiers and URN-based naming
  • Capability Declaration: Detailed skill descriptions with input/output modalities
  • Performance Metrics: Certified evaluations and real-time telemetry
  • Trust Framework: Certification levels and audit trails
  • Dynamic Routing: Support for adaptive endpoint resolution
  • Multi-Modal Support: Text, audio, video, and image processing capabilities

Repository Contents

  • agentfacts-schema.json - JSON Schema definition for the AgentFacts format
  • README.md - This documentation file

Schema Structure

Core Sections

  1. Identity & Basic Information

    • Unique IDs, names, descriptions, and versioning
    • Documentation URLs and jurisdiction information
  2. Provider Information

    • Provider details with optional DID-based verification
    • Trust anchoring through decentralized identifiers
  3. Network Endpoints

    • Static API endpoints
    • Dynamic routing with geographic and load balancing policies
  4. Technical Capabilities

    • Supported modalities (text, audio, video, image)
    • Authentication methods and required scopes
    • Streaming and batch processing support
  5. Functional Skills

    • Detailed skill definitions with performance constraints
    • Language support and token limits
    • Input/output mode specifications
  6. Quality Metrics

    • Performance scores and availability statistics
    • Audit trails with immutable evidence storage
    • Third-party verification records
  7. Observability & Monitoring

    • Telemetry configuration and metrics
    • Real-time performance indicators
    • Data retention and sampling policies
  8. Trust & Verification

    • Certification levels and issuer information
    • Validity periods for certifications

Usage Examples

Basic Agent Definition

{
  "id": "myorg:translation-agent-v1",
  "agent_name": "urn:agent:myorg:TranslationBot",
  "label": "MultiLang Translator",
  "description": "Real-time translation service supporting 25+ languages",
  "version": "2.1.0",
  "provider": {
    "name": "MyOrg Inc.",
    "url": "https://myorg.com"
  },
  "endpoints": {
    "static": ["https://api.myorg.com/v2/translate"]
  },
  "capabilities": {
    "modalities": ["text", "audio"],
    "streaming": true,
    "authentication": {
      "methods": ["oauth2", "jwt"]
    }
  },
  "skills": [
    {
      "id": "translation",
      "description": "Real-time multilingual translation",
      "inputModes": ["text"],
      "outputModes": ["text"],
      "supportedLanguages": ["en", "es", "fr", "de"],
      "latencyBudgetMs": 500
    }
  ]
}

Advanced Agent with Verification

{
  "id": "enterprise:ai-assistant-pro",
  "agent_name": "urn:agent:enterprise:AssistantPro",
  "label": "Enterprise AI Assistant",
  "description": "Advanced AI assistant for enterprise workflows",
  "version": "3.0.0",
  "provider": {
    "name": "Enterprise AI Corp",
    "url": "https://enterpriseai.com",
    "did": "did:web:enterpriseai.com"
  },
  "endpoints": {
    "static": ["https://api.enterpriseai.com/v3/assistant"],
    "adaptive_resolver": {
      "url": "https://resolver.enterpriseai.com/dispatch",
      "policies": ["geo", "load", "threat-shield"]
    }
  },
  "capabilities": {
    "modalities": ["text", "audio", "image"],
    "streaming": true,
    "batch": true,
    "authentication": {
      "methods": ["oauth2", "jwt"],
      "requiredScopes": ["assistant:read", "assistant:write"]
    }
  },
  "skills": [
    {
      "id": "analysis",
      "description": "Document analysis and summarization",
      "inputModes": ["text", "image"],
      "outputModes": ["text"],
      "maxTokens": 4096
    }
  ],
  "certification": {
    "level": "audited",
    "issuer": "AI Safety Council",
    "issuanceDate": "2025-01-15T10:00:00Z",
    "expirationDate": "2026-01-15T10:00:00Z"
  },
  "evaluations": {
    "performanceScore": 4.8,
    "availability90d": "99.95%",
    "lastAudited": "2025-06-01T12:00:00Z",
    "auditTrail": "ipfs://QmX7Y8Z9abcd...",
    "auditorID": "TrustedAI Auditor v3.0"
  },
  "telemetry": {
    "enabled": true,
    "retention": "30d",
    "sampling": 0.1,
    "metrics": {
      "latency_p95_ms": 150,
      "throughput_rps": 1000,
      "error_rate": 0.001,
      "availability": "99.98%"
    }
  }
}

Field Classifications

🟢 AgentCard Compatible

Fields that map directly to existing AgentCard specifications:

  • label → AgentCard.name
  • description → AgentCard.description
  • version → AgentCard.version
  • provider → AgentCard.provider
  • endpoints.static → AgentCard.url
  • capabilities.modalities → AgentCard.defaultInputModes/defaultOutputModes
  • capabilities.authentication → AgentCard.securitySchemes & security
  • skills → AgentCard.skills

🔵 Extended Features

Advanced capabilities beyond basic agent cards:

  • Dynamic endpoint resolution
  • Performance metrics and SLAs
  • Certification and audit trails
  • Real-time telemetry
  • Trust verification mechanisms

Validation

To validate an AgentFacts document against the schema:

# Using ajv-cli
npm install -g ajv-cli
ajv validate -s agentfacts-schema.json -d your-agent.json

# Using online validators
# Upload both files to https://www.jsonschemavalidator.net/

Implementation Guidelines

  1. Validation: Always validate AgentFacts documents against the JSON Schema
  2. Flexibility: The schema allows flexible values while maintaining structure
  3. Security: Implement proper authentication as declared in capabilities
  4. Monitoring: Maintain telemetry data accuracy for trust building
  5. Certification: Consider appropriate certification levels for production agents

Contributing

This is an open standard for the agentic web ecosystem. Contributions, suggestions, and implementations are welcome through issues and pull requests.

MIT License

Building the infrastructure for trusted, discoverable AI agents on the web.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published