Skip to content

GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery

License

Notifications You must be signed in to change notification settings

parlange/gravit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 

Repository files navigation

DOI ORCID arXiv License: Apache-2.0 Python 3.12 PyTorch

GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery

René Parlange, Juan C. Cuevas-Tello, Octavio Valenzuela, Omar de J. Cabrera-Rosas, Tomás Verdugo, Anupreeta More, Anton T. Jaelani

Systematic comparison of neural networks used in discovering strong gravitational lenses

Anupreeta More, Raoul Canameras, Anton T. Jaelani, Yiping Shu, Yuichiro Ishida, Kenneth C. Wong, Kaiki Taro Inoue, Stefan Schuldt, Alessandro Sonnenfeld


🌌 C21 dataset: HOLISMOKES VI (Cañameras et al., 2021)

Training: 40,000 mocklenses and 40,000 non-lenses. Validation: 500 of each class.

Hyper Suprime-Cam (HSC) gri bands and Hubble Ultra Deep Field (HUDF) ACS and WFC3 bands

🌌 J24 dataset: SuGOHI X (Jaelani et al., 2024)

18,660 lenses and 18,660 non-lens objects

Hyper Suprime-Cam (HSC) gri bands

No validation dataset (partitioned 95% for training and 5% for validation)


🧪 Experiments

HOLISMOKES VI (C21)

Notebook Description
a1-C21-classification-head.ipynb Fine-tune only the classification head
a2-C21-half.ipynb Fine-tune half of the layers
a3-C21-all-blocks+ResNet18.ipynb Train all layers + ResNet18 baseline

SuGOHI X (J24)

Notebook Description
b1-J24-classification-head.ipynb Fine-tune only the classification head
b2-J24-half.ipynb Fine-tune half of the layers
b3-J24-all-blocks.ipynb Train all layers

Combined (C21+J24)

Notebook Description
c1-C21+J24-classification-head.ipynb Fine-tune only the classification head
c2-C21+J24-half.ipynb Fine-tune half of the layers
c3-C21+J24-all-blocks+ResNet18.ipynb Train all transformer blocks + ResNet18 baseline

Subsampled C21 (18,660 samples)

Notebook Description
s1-C21-18660-classification-head.ipynb Fine-tune only the classification head
s2-C21-18660-half.ipynb Fine-tune half of the layers
s3-C21-18660-all-blocks+ResNet18.ipynb Train all layers + ResNet18 baseline

Inference

Notebook Description
inference-L2.ipynb Recall for search in L2 subset (138 lenses)

About

GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published