Skip to content

nmlemus/dsagent

Repository files navigation

DSAgent

Upload Python Package PyPI Python License

An AI-powered autonomous agent for data science with persistent Jupyter kernel execution, session management, and conversational interface.

    ____  _____  ___                    __
   / __ \/ ___/ /   | ____ ____  ____  / /_
  / / / /\__ \ / /| |/ __ `/ _ \/ __ \/ __/
 / /_/ /___/ // ___ / /_/ /  __/ / / / /_
/_____//____//_/  |_\__, /\___/_/ /_/\__/
                   /____/

Features

  • Conversational Interface: Interactive chat with persistent context and sessions
  • Dynamic Planning: Agent creates and follows plans with step tracking
  • Persistent Execution: Code runs in a Jupyter kernel with variable persistence across messages
  • Session Management: Save and resume conversations with full kernel state
  • Multi-Provider LLM: Supports OpenAI, Anthropic, Google, Ollama via LiteLLM
  • MCP Tools: Connect to external tools (web search, databases, etc.) via Model Context Protocol
  • Human-in-the-Loop: Configurable checkpoints for plan and code approval
  • Notebook Generation: Automatically generates clean, runnable Jupyter notebooks

Installation

pip install datascience-agent

With optional features:

pip install "datascience-agent[api]"   # FastAPI server support
pip install "datascience-agent[mcp]"   # MCP tools support

For development:

git clone https://github.com/nmlemus/dsagent
cd dsagent
uv sync --all-extras

Quick Start

1. Setup (First Time)

Run the setup wizard to configure your LLM provider:

dsagent init

This will:

  • Ask for your LLM provider (OpenAI, Anthropic, local, etc.)
  • Store your API key securely in ~/.dsagent/.env
  • Optionally configure MCP tools (web search, etc.)

2. Start Chatting

dsagent

This starts an interactive session where you can:

  • Chat naturally with the agent
  • Execute Python code with persistent variables
  • Analyze data files
  • Generate visualizations
  • Resume previous sessions

3. One-Shot Tasks

For batch processing or scripts:

dsagent run "Analyze sales trends" --data ./sales.csv

CLI Commands

Command Description
dsagent Start interactive chat (default)
dsagent chat Same as above, with explicit options
dsagent run "task" Execute a one-shot task
dsagent init Setup wizard for configuration
dsagent mcp list List configured MCP servers
dsagent mcp add <template> Add an MCP server

Examples

# Interactive chat with specific model
dsagent --model claude-sonnet-4-5

# One-shot analysis
dsagent run "Find patterns in this data" --data ./dataset.csv

# Resume a previous session
dsagent --session abc123

# With MCP tools (web search)
dsagent --mcp-config ~/.dsagent/mcp.yaml

# Human-in-the-loop mode
dsagent --hitl plan

For complete CLI documentation, see docs/CLI.md.

Python API

DSAgent provides two agents for different use cases:

ConversationalAgent (Interactive)

For building chat interfaces and interactive applications:

from dsagent import ConversationalAgent, ConversationalAgentConfig

config = ConversationalAgentConfig(model="gpt-4o")
agent = ConversationalAgent(config)
agent.start()

# Chat with persistent context
response = agent.chat("Load the iris dataset")
print(response.content)

response = agent.chat("Train a classifier on it")
print(response.content)  # Has access to previous variables

agent.shutdown()

PlannerAgent (Batch)

For one-shot tasks and automated pipelines:

from dsagent import PlannerAgent

with PlannerAgent(model="gpt-4o", data="./data.csv") as agent:
    result = agent.run("Analyze this dataset and create visualizations")
    print(result.answer)
    print(f"Notebook: {result.notebook_path}")

For complete API documentation, see docs/PYTHON_API.md.

Supported Models

DSAgent uses LiteLLM to support 100+ LLM providers:

Provider Models API Key
OpenAI gpt-4o, o1, o3-mini OPENAI_API_KEY
Anthropic claude-sonnet-4-5, claude-opus-4 ANTHROPIC_API_KEY
Google gemini-2.5-pro, gemini-2.5-flash GOOGLE_API_KEY
DeepSeek deepseek/deepseek-r1 DEEPSEEK_API_KEY
Ollama ollama/llama3.2 None (local)

For detailed model setup, see docs/MODELS.md.

MCP Tools

Connect to external tools via the Model Context Protocol:

# Add web search capability
dsagent mcp add brave-search

# Use it in chat
dsagent --mcp-config ~/.dsagent/mcp.yaml

Available templates: brave-search, filesystem, github, memory, fetch, bigquery

For MCP configuration details, see docs/MCP.md.

Session Management

Sessions persist your conversation history and kernel state:

# List sessions
dsagent chat
> /sessions

# Resume a session
dsagent --session <session-id>

# Export session to notebook
> /export myanalysis.ipynb

Output Structure

Each run creates organized output:

workspace/
└── runs/{run_id}/
    ├── data/           # Input data (copied)
    ├── notebooks/      # Generated Jupyter notebooks
    ├── artifacts/      # Charts, models, exports
    └── logs/           # Execution logs

Documentation

License

MIT

About

An AI-powered autonomous agent for data analysis with dynamic planning and persistent Jupyter kernel execution.

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages