Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions _toc.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,12 @@ chapters:
- file: calculus/index
sections:
- file: calculus/functions
- file: calculus/function-identities
- file: calculus/limits
- file: calculus/derivatives
- file: calculus/derivative-rules
- file: calculus/lhopitals-rule
- file: calculus/series-expansion
- file: calculus/integration
# - file: calculus/integration
- file: calculus/integration-substitution
- file: calculus/integration-by-parts
- file: calculus/integration-partial-fractions
Expand All @@ -23,9 +23,9 @@ chapters:
- file: multivariable-calculus/derivatives
- file: multivariable-calculus/total-differential
- file: multivariable-calculus/manipulating-derivatives
- file: multivariable-calculus/series-expansion
- file: multivariable-calculus/integration
- file: multivariable-calculus/line-integral
# - file: multivariable-calculus/series-expansion
# - file: multivariable-calculus/integration
# - file: multivariable-calculus/line-integral
# - file: multivariable-calculus/surface-integral
# - file: multivariable-calculus/volume-integral
# - file: multivariable-calculus/integration-theorems
Expand All @@ -42,14 +42,14 @@ chapters:
- file: nonlinear-equations/definition
- file: nonlinear-equations/quadratic-cubic
- file: nonlinear-equations/root-finding
- file: nonlinear-equations/linearization
# - file: nonlinear-equations/linearization
- file: first-order-odes/index
sections:
- file: first-order-odes/definition
- file: first-order-odes/separable
- file: first-order-odes/exact
- file: first-order-odes/linearity
- file: first-order-odes/undetermined-coefficients
# - file: first-order-odes/linearity
# - file: first-order-odes/undetermined-coefficients
- file: first-order-odes/laplace-transform
- file: first-order-odes/integrating-factor
- file: first-order-odes/numerical-solution
Expand Down
20 changes: 18 additions & 2 deletions calculus/derivative-rules.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ functions that are hard to expand!

1. $f(x) = (x+1)(2x^2 + 5)(5x^3-4)$

```{solution}
Identify:

\begin{equation}
Expand Down Expand Up @@ -67,9 +68,11 @@ functions that are hard to expand!
&+ (2x^2+5)(5x^3-4)
\end{align}
<!--markdownlint-enable MD011 -->
```

2. $f(x) = \dfrac{1}{x} e^x$

```{solution}
Identify:

\begin{align}
Expand All @@ -83,9 +86,11 @@ functions that are hard to expand!
f'(x) &= \frac{1}{x}e^x + e^x(-\frac{1}{x^2}) \\
&= e^x\left(\frac{1}{x} - \frac{1}{x^2}\right)
\end{align}
```

3. $f(x) = (x^2+3)\ln x$

```{solution}
Identify:

\begin{align}
Expand All @@ -99,6 +104,7 @@ functions that are hard to expand!
f'(x) &= (x^2+3)\cdot\frac{1}{x} + (\ln x)(2x) \\
&= \frac{x^2+3}{x} + 2x\ln x
\end{align}
```

## Quotient Rule

Expand Down Expand Up @@ -143,6 +149,7 @@ is helpful to do the quotient rule!

1. $\displaystyle f(x) = \frac{x^2 -1}{x^4 + 2}$

```{solution}
\begin{align}
u &= x^2 -1 & v &= x^4 +2 \\
u' &= 2x & v' &= 4x^3
Expand All @@ -154,9 +161,11 @@ is helpful to do the quotient rule!
f'(x) &= \frac{ (x^4 + 2) \cdot (2x) - (x^2 - 1) \cdot (4x^3)}{(x^4 +2)^2}\\
&= \frac{2x^5 + 4x^2 - 4x^5 +4x^3}{x^8 + 2x^4 + 4}
\end{align}
```

2. $\displaystyle f(x) = \frac{e^{x}}{1 + x}$

```{solution}
\begin{align}
u &= e^{x} & v &= 1 + x \\
u' &= e^{x} & v' &= 1
Expand All @@ -168,9 +177,11 @@ is helpful to do the quotient rule!
f'(x) &= \frac{(1 + x) \cdot e^{x} - e^{x} \cdot 1}{(1 + x)^2} \\
&= \frac{x e^{x}}{(1 + x)^2}
\end{align}
```

3. $\displaystyle f(x) = \frac{(x - 1)(x^2 - 2x)}{x^4}$

```{solution}
\begin{align}
u &= & v &= x^4\\
u' &= 3x^2 - 6x + 2 & v' &= 4x^3 \\
Expand All @@ -187,6 +198,7 @@ is helpful to do the quotient rule!
Note, though, that in this case we could also have expanded the numerator,
divided through by $x^8$, and differentiated term-by-term to arrive at the
same answer. The faster route depends on the problem!
```

## Chain rule

Expand Down Expand Up @@ -225,6 +237,7 @@ The results match! Some additional examples:

1. $f(x) = e^{x^2}$

```{solution}
Make the replacement $u = x^2$:

\begin{align}
Expand All @@ -237,9 +250,11 @@ The results match! Some additional examples:
\begin{equation}
f'(x) = \dd{}{f}{u} \dd{}{u}{x} = e^{u} \dd{}{u}{x} = e^{x^2} \cdot 2x
\end{equation}
```

2. $f(x) = \ln(1 + 2x)$

```{solution}
Make the replacement $u = 1+2x$:

\begin{align}
Expand All @@ -252,9 +267,11 @@ The results match! Some additional examples:
\begin{equation}
f'(x) = \dd{}{f}{u} \dd{}{u}{x} = \frac{1}{u} \dd{}{u}{x} = \frac{2}{1 + 2x}
\end{equation}
```

3. $f(x) = \dfrac{2}{1 + 2x}$

```{solution}
Make the replacement $u = 1+2x$:

\begin{align}
Expand All @@ -268,6 +285,7 @@ The results match! Some additional examples:
f'(x) = \dd{}{f}{u} \dd{}{u}{x} = -2u^{-2} \cdot \dd{}{u}{x} =
\frac{-4}{(1 + 2x)^2}
\end{equation}
```

## Trigonometric functions

Expand Down Expand Up @@ -361,8 +379,6 @@ The roots occur at $t = T/4$ or $3T/4$, when $x = 0$ and the spring is no longer
stretched. All potential energy has been converted to kinetic energy!
````

## Skill builder problems

1. $f(x) = 3 \cos x + \sin x$

```{solution}
Expand Down
4 changes: 4 additions & 0 deletions calculus/derivatives.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,7 @@ examples:

1. $f(x) = (x - 1)^2 + 1$

```{solution}
\begin{align}
f'(x) &= \lim_{h \to 0} \frac{[(x + h - 1)^2 + 1] - [(x - 1)^2 + 1]}{h} \\
&= \lim_{h \to 0} \frac{(x - 1)^2 +
Expand All @@ -95,16 +96,19 @@ examples:
&= \lim_{h \to 0} 2(x - 1) + h \\
&= 2(x - 1)
\end{align}
```

2. $f(x) = 1/x$

```{solution}
\begin{align}
f'(x) &= \lim_{h \to 0} \frac{\dfrac{1}{x+h} - \dfrac{1}{x}}{h} \\
&= \lim_{h \to 0} \frac{\dfrac{x - (x + h)}{x(x+h)}}{h} \\
&= \lim_{h \to 0} \frac{\dfrac{- h}{x(x+h)}}{h} \\
&= \lim_{h \to 0} \frac{-1}{(x+h)x} \\
&= \frac{-1}{x^2}
\end{align}
```

## Differentiability

Expand Down
79 changes: 79 additions & 0 deletions calculus/function-identities.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Function identities

## Trigonmetric functions

\begin{align}
\sin \theta &= \frac{y}{r} & \csc \theta &= \frac{r}{x} = \frac{1}{\cos \theta} \\
\cos \theta &= \frac{x}{r} & \sec \theta &= \frac{r}{x} = \frac{1}{\cos \theta} \\
\tan \theta &= \frac{y}{x} = \frac{\sin \theta}{\cos \theta} &
\cot \theta &= \frac{x}{y} = \frac{\cos \theta}{\sin \theta}
\end{align}

\begin{align}
\sin^2 \theta + \cos^2 \theta = 1 \\
1 + \tan^2 \theta = \sec^2 \theta \\
1 + \cot^2 \theta = \csc^2 \theta
\end{align}

\begin{align}
\cos(A+B) = \cos A \cos B - \sin A \sin B \\
\sin(A+B) = \sin A \cos B - \cos A \sin B
\end{align}

\begin{align}
\cos 2 \theta = \cos^2 \theta - \sin^2 \theta \\
\sin 2 \theta = 2 \sin \theta \cos \theta
\end{align}

\begin{align}
\cos^2 \theta = \frac{1 + \cos 2 \theta}{2} \\
\sin^2 \theta = \frac{1 - \cos 2 \theta}{2}
\end{align}

\begin{align}
\sin(\theta + 2 \pi) = \sin \theta \\
\cos(\theta + 2 \pi) = \cos \theta
\end{align}

\begin{align}
\sin(- \theta) = - \sin \theta \\
\cos(- \theta) = cos \theta
\end{align}

## Exponential functions

\begin{align}
a^x a^y &= a^{x+y} \\
\frac{a^x}{a^y} &= a^{x-y} \\
(a^x)^y = (a^y)^x &= a^{xy} \\
a^x b^x &= (ab)^x \\
\frac{a^x}{b^x} &= \left (\frac{a}{b} \right)^x
\end{align}

## Logarithmic functions

Definition:

\begin{align}
y &= \log_{a}x \\
x &= a^y
\end{align}

Natural Log:

\begin{equation}
\ln x = \log_{e} x
\end{equation}

Common log:

\begin{equation}
\log x = \log_{10} x
\end{equation}

\begin{align}
\ln(bx) &= \ln(b) + \ln(x) \\
\ln\left(\frac{b}{x}\right) &= \ln(b) - \ln(x) \\
\ln(x^r) &= r \ln(x) \\
\log_{a}x &= \frac{\ln(x)}{\ln(a)} \\
\end{align}
80 changes: 0 additions & 80 deletions calculus/functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -266,83 +266,3 @@ y = A\sin\left[ \frac{2\pi}{L}(x + x_0) \right] + y_0

where *A* is the amplitude of the wave, *L* is the period of the wave, $x_0$ is
a horizontal (phase) shift, and $y_0$ is a vertical shift.

## Identities

### Trigonmetric functions

\begin{align}
\sin \theta &= \frac{y}{r} & \csc \theta &= \frac{r}{x} = \frac{1}{\cos \theta} \\
\cos \theta &= \frac{x}{r} & \sec \theta &= \frac{r}{x} = \frac{1}{\cos \theta} \\
\tan \theta &= \frac{y}{x} = \frac{\sin \theta}{\cos \theta} &
\cot \theta &= \frac{x}{y} = \frac{\cos \theta}{\sin \theta}
\end{align}

\begin{align}
\sin^2 \theta + \cos^2 \theta = 1 \\
1 + \tan^2 \theta = \sec^2 \theta \\
1 + \cot^2 \theta = \csc^2 \theta
\end{align}

\begin{align}
\cos(A+B) = \cos A \cos B - \sin A \sin B \\
\sin(A+B) = \sin A \cos B - \cos A \sin B
\end{align}

\begin{align}
\cos 2 \theta = \cos^2 \theta - \sin^2 \theta \\
\sin 2 \theta = 2 \sin \theta \cos \theta
\end{align}

\begin{align}
\cos^2 \theta = \frac{1 + \cos 2 \theta}{2} \\
\sin^2 \theta = \frac{1 - \cos 2 \theta}{2}
\end{align}

\begin{align}
\sin(\theta + 2 \pi) = \sin \theta \\
\cos(\theta + 2 \pi) = \cos \theta
\end{align}

\begin{align}
\sin(- \theta) = - \sin \theta \\
\cos(- \theta) = cos \theta
\end{align}

### Exponential functions

\begin{align}
a^x a^y &= a^{x+y} \\
\frac{a^x}{a^y} &= a^{x-y} \\
(a^x)^y = (a^y)^x &= a^{xy} \\
a^x b^x &= (ab)^x \\
\frac{a^x}{b^x} &= \left (\frac{a}{b} \right)^x
\end{align}

### Logarithmic functions

Definition:

\begin{align}
y &= \log_{a}x \\
x &= a^y
\end{align}

Natural Log:

\begin{equation}
\ln x = \log_{e} x
\end{equation}

Common log:

\begin{equation}
\log x = \log_{10} x
\end{equation}

\begin{align}
\ln(bx) &= \ln(b) + \ln(x) \\
\ln\left(\frac{b}{x}\right) &= \ln(b) - \ln(x) \\
\ln(x^r) &= r \ln(x) \\
\log_{a}x &= \frac{\ln(x)}{\ln(a)} \\
\end{align}
Loading