Quadrotor gymnasium environments and baseline RL implementations.
- Quadrotor environments with predefined trajectories that follow Lissajous curves.
- Baseline RL training code (PPO and SAC) from Stable-Baselines-3
- Integration with Weights & Biases
Clone the environment and change directories. The following uses cloning via ssh:
git clone [email protected]:mht3/quad_rl.git
cd quad_rlCreate a new conda environment with Python 3.11.
conda create -n quad python=3.11Activate the environment.
conda activate quadInstall torch
PyTorch on GPU
Install a CUDA enabled PyTorch that matches your system architecture.
pip install -U torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu128PyTorch on CPU Only
Alternatively, install PyTorch on the CPU.
pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cpuInstall the remaining required packages.
pip install -r requirements.txtpython main.py --env_id Quadrotor-Fixed-v0 --algorithm PPO --seed 42 -t 10000000 --n_steps 3072 --batch_size 256 --lr 0.00005 --policy_net 512 256 128 --value_net 512 256 128python main.py --env_id Quadrotor-Fixed-v0 --algorithm PPO --seed 42 -t 10000000 --n_steps 3072 --batch_size 256 --lr 0.00005 --policy_net 512 256 128 --value_net 512 256 128 --test --render