It is suitable for all kinds of real-time tasks, especially on embedded devices of unmanned systems. video
We provide two models (NYUv2 and KITTI) for robust relative depth estimation.
| Dataset | Param./M | Abs_Rel | RMSE | ||||
|---|---|---|---|---|---|---|---|
| NYUv2 | 8.7 | 0.101 | 0.429 | 0.883 | 0.971 | 0.993 | 2.083 |
| KITTI | 8.7 | 0.103 | 4.323 | 0.889 | 0.967 | 0.986 | 2.649 |
git clone https://github.com/liangxiansheng093/BoRe-Depth.git
cd BoRe-Depth
pip install -r requirements.txt
Download weights to checkpoints folder.
python test.py --dataset_name nyu --dataset_dir datasets/nyu/testing --ckpt_path checkpoints/nyu.ckpt
Options:
--dataset_name: [nyu, kiit, iBims]. The size of the predicted depth map based on the selected dataset.--dataset_dir: The path to the test dataset (bothjpgandpngformat).--ckpt_path: The path to the trained weights.
python infer.py --dataset_name nyu --ckpt_path checkpoints/nyu.ckpt --input_dir demo --output_dir output --save-vis --save-depth
Options:
--dataset_name: [nyu, kiit, iBims]. The size of the predicted depth map based on the selected dataset.--ckpt_path: The path to the trained weights.--input_dir: The path to the input picture or folder (bothjpgandpngformat).--output_dir: The path to the output depth map (bothpngandnpyformat).--save-vis: Saving the visual images.--save-depth: Saving the numpy results.

