CNN image recognition project
.
cnn-image-classifier/
├── data/
│ ├── raw/ # Unprocessed images
│ ├── processed/ # Preprocessed images (resized, normalized)
├── models/
│ └── cnn_model.pth # Saved PyTorch model
├── notebooks/
│ └── exploration.ipynb # EDA and prototyping
├── src/
│ ├── __init__.py
│ ├── config.py # Hyperparameters and paths
│ ├── dataset.py # Dataset loading and transforms
│ ├── model.py # CNN architecture
│ ├── train.py # Training loop
│ ├── evaluate.py # Accuracy, confusion matrix
│ ├── predict.py # Inference on new images
├── tests/
│ └── test_model.py # Unit tests
├── requirements.txt
├── README.md
└── run.py # CLI entry point
# CNN Image Recognition
Convolutional Neural Network (CNN) image recognition project for classifying images.
## Overview
This project uses a CNN model to perform image recognition. It includes modules for training, testing, and using the pre-trained model for predictions.
## Table of Contents
- [Demo](#demo)
- [Prerequisites](#prerequisites)
- [Installation](#installation)
- [Usage](#usage)
- [Training](#training)
- [Testing](#testing)
- [Contributing](#contributing)
- [License](#license)
## Demo
Include a link or GIF demonstrating your CNN image recognition system in action.
## Prerequisites
- Python 3
- Dependencies listed in `requirements.txt`
## Installation
```bash
pip install -r requirements.txtfrom image_recognition import CNNModel
model = CNNModel()
result = model.predict(image_path)
print(result)python train.py --dataset_path /path/to/dataset --epochs 10python test.pyPlease read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.
This project is licensed under the MIT License - see the LICENSE file for details.
### LICENSE:
Create a file named `LICENSE` and add the MIT License text:
MIT License
