# Variational Autoencoder (VAE) Variant
Experimented with following VAE, methods are explained in the notebook prior to modelling
- Basic (vanilaa) VAE
- Beta VAE
- Dirichlet VAE
- Vector Quantized VAE
From experimentation in basic_vae, we have decided upon these few:
num_epochs = 30, 2.learning_rate = 25e-4, 3.latent_dim = 20and 4.batch_size = 128
| VAE Variant | Parameters | Total Loss | Reconstruction Loss | KL-D Loss | Training Time |
|---|---|---|---|---|---|
| General VAE | 310, 504 | 97.72 | 73.21 | 24.51 | 20 min 26s |
| Beta VAE | 236, 740 | 131.97 | 94.51 | 12.49 | 16 min 49s |
| Dirirchlet VAE | 284, 405 | 0.92 | 0.77 | 0.15 | 21 min 20s |
| VQ-VAE | 299,985 | 0.9079 | 0.0012 | VQ-Loss: 0.9067 |
61 min 44s |
VQ-VAE ( celebA) |
303,187 | 0.0104 | 0.0079 | VQ_Loss: 0.0025 |
80 min 41s (GPU) |