basic pytorch tutorials
A crash course introduction for the Tjian/Darzacq Lab into computer vision and representation learning in PyTorch. A basic (MNIST training/eval and feature map intro), intermediate (CIFAR10 training/eval and feature maps), and advanced introduction (Various pretrained Imagenet1000 models inference on new images, feature maps, attention maps) are provided.
git clone https://github.com/jkmckenna/jm_pytorch_tutorialscd jm_pytorch_tutorialsconda env create -f environment.ymlconda activate pytorch-tutorialspython -m ipykernel install --user --name pytorch-tutorials --display-name "Python (PyTorch Tutorials)"pip install -e .conda env update -f environment.yml --prune