Nowadays a bast majority of server workloads run using linux containers because of his flexibility and lightweight but have you ever think how does linux containers works. In this tutorial we will demystify how does linux containers works with some practical examples. Linux containers works thanks two kernel features: namespaces and cgroups.
- Understand how linux containers works with practical examples
- Table of contents
- Linux Namespaces
- Linux control groups (cgroups)
- Container Fundamentals (key technologies)
- Create a container from scratch
- Inspect Namespaces within a docker container
- Conclusion
A namespace wraps a global system resource in an abstraction that makes it appear to the processes within the namespace that they have their own isolated instance of the global resource. Changes to the global resource are visible to other processes that are members of the namespace, but are invisible to other processes. One use of namespaces is to implement containers. [1]
Currently the linux kernel have 8 types of namespaces:
| Namespace | Isolates |
|---|---|
| cgroup | Cgroup root directory |
| IPC | System V IPC, POSIX message queues |
| Network | Network devices, stacks, ports, etc. |
| Mount | Mount points |
| PID | Process IDs |
| Time | Boot and monotonic clocks |
| User | User and group IDs |
| UTS | Hostname and NIS domain name |
Cgroups allow you to allocate resources — such as CPU time, system memory, network bandwidth, or combinations of these resources — among user-defined groups of tasks (processes) running on a system. You can monitor the cgroups you configure, deny cgroups access to certain resources, and even reconfigure your cgroups dynamically on a running system. [2]
In this section we gonna make some practices with the following key technologies that make possible the usage of containers in linux:
- Process namespace fundamentals
- Filesystem Overlay FS fundamentals
- Networking Linux bridge fundamentals
- Control groups (cgroups) fundamentals
NOTE: This tutorial was made using a VM with 1GB of ram and 1vCPU using debian 10 buster with kernel 4.19.0-16-amd64. All commands were executed using root privileges
A process namespace isolate a running command from the host. Let's see how to implement a process namespace in linux.
List process namespaces
$ lsns -t pidGet the PID of the current terminal
$ echo $$ # parent PIDLaunch a new zsh terminal using namespaces
$ unshare --fork --pid --mount-proc zsh
$ sleep 300 &
$ sleep 300 &
$ sleep 300 &
$ sleep 300 &
$ sleep 300 &
$ topSee the process tree from the parent
$ ps f -g <PPID>List namespaces
$ lsns -t pidContainers need tohave a filesystem, one of the most used filesystem for containers is overlay who can mount with layers and merge in a single directory, the lower layers are read only and all changes are made on the upper layer. Let's see how does overlay fs works.
Create directories
$ cd /tmp
$ mkdir {lower1,lower2,upper,work,merged}Create some files in lower directories
$ echo "Lower 1 - original" > lower1/file1.txt
$ echo "Lower 2 - original" > lower2/file2.txtCreate overlay FS
$ mount -t overlay -o lowerdir=/tmp/lower1:/tmp/lower2,upperdir=/tmp/upper,workdir=/tmp/work none /tmp/mergedCreate, modify files
$ cd /tmp/merged
$ echo "file created in merged directory" > file_created.txt
$ echo "file 1 modified" > file1.txtUmount overlay fs
$ cd /tmp
$ umount /tmp/mergedInspect lower and upper dirs
$ find -name '*.txt' -type f 2>/dev/null | while read fn; do echo ">> cat $fn"; cat $fn; doneLinux container uses network namespaces to isolate the network from the host, this is possible implementing a bridge interface that acts like network switch, and every container connect to that interface with his own ip address. Let's see how does linux bridge and network namespaces works.
Create a Network Virtual bridge
$ ip link add br-net type bridgeList Network Interfaces
$ ip linkAssign an IP Address to bridge interface
$ ip addr add 192.168.55.1/24 brd + dev br-netBring UP the bridge interface
$ ip link set br-net upCreate 2 Network Namespaces
$ ip netns add ns1
$ ip netns add ns2Create a Virtual Ethernet cable pair
$ ip link add veth-ns1 type veth peer name br-ns1
$ ip link add veth-ns2 type veth peer name br-ns2Assign veth to namespaces
$ ip link set veth-ns1 netns ns1
$ ip link set veth-ns2 netns ns2
$ ip link set br-ns1 master br-net
$ ip link set br-ns2 master br-netAssign IP address to veth within namespaces
$ ip -n ns1 addr add 192.168.55.2/24 dev veth-ns1
$ ip -n ns2 addr add 192.168.55.3/24 dev veth-ns2Bring UP veth interfaces within Namespaces
$ ip -n ns1 link set lo up
$ ip -n ns2 link set lo up
$ ip -n ns1 link set veth-ns1 up
$ ip -n ns2 link set veth-ns2 upBring UP bridge veth in the local host
$ ip link set br-ns1 up
$ ip link set br-ns2 upConfigure default route within namespaces
$ ip -n ns1 route add default via 192.168.55.1 dev veth-ns1
$ ip -n ns2 route add default via 192.168.55.1 dev veth-ns2 Enable IP forward in the host
$ sysctl -w net.ipv4.ip_forward=1Configure MASQUERADE in the host for 192.168.55.0/24 subnet
$ iptables -t nat -A POSTROUTING -s 192.168.55.0/24 ! -o br-net -j MASQUERADECheck connectivity within namespaces
$ ip netns exec ns1 ping -c 3 192.168.55.3 # ping ns2
$ ip netns exec ns2 ping -c 3 192.168.55.2 # ping ns1
$ ip netns exec ns1 ping -c 3 192.168.55.1 # ping br-net gateway
$ ip netns exec ns2 ping -c 3 192.168.55.1 # ping br-net gateway
$ ip netns exec ns1 ping -c 3 1.1.1.1 # ping internet
$ ip netns exec ns2 ping -c 3 1.1.1.1 # ping internetControl groups or cgroups are used by containers to limit the usage of resource in the host machine. Let's see how does cgroups works.
Create cgroups directory
$ mkdir -p /mycg/{memory,cpusets,cpu}Mount cgroups directory
$ mount -t cgroup -o memory none /mycg/memory
$ mount -t cgroup -o cpu,cpuacct none /mycg/cpu
$ mount -t cgroup -o cpuset none /mycg/cpusetsCreate new directories under CPU controller
mkdir -p /mycg/cpu/user{1..3}Assign CPU shares to every user (This example uses 1vCPU)
# 2048 / (2048 + 512 + 80) = 77%
$ echo 2048 > /mycg/cpu/user1/cpu.shares
# 512 / (2048 + 512 + 80) = 19%
$ echo 512 > /mycg/cpu/user2/cpu.shares
# 80 / (2048 + 512 + 80) = 3%
$ echo 80 > /mycg/cpu/user3/cpu.sharesCreate artificial load
$ cat /dev/urandom &> /dev/null &
$ PID1=$!
$ cat /dev/urandom &> /dev/null &
$ PID2=$!
$ cat /dev/urandom &> /dev/null &
$ PID3=$!Assign process to every user
$ echo $PID1 > /mycg/cpu/user1/tasks
$ echo $PID2 > /mycg/cpu/user2/tasks
$ echo $PID3 > /mycg/cpu/user3/tasksMonitoring process
$ topSo far we know how does linux namespaces works, now lets create a container using overlayfs, network namespaces, cgroups and process namespaces from scratch. Let's see how a linux container is created.
Download and extract debian container fs from docker
$ docker pull debian
$ docker save debian -o debian.tar
$ mkdir debian_layer
$ mkdir -p fs/{lower,upper,work,merged}
$ tar xf debian.tar -C debian_layer
$ find debian_layer -name 'layer.tar' -exec tar xf {} -C fs/lower \;Create bridge interface
$ ip netns add cnt
$ ip link add br-cnt type bridge
$ ip addr add 192.168.22.1/24 brd + dev br-cnt
$ ip link set br-cnt up
$ sysctl -w net.ipv4.ip_forward=1
$ iptables -t nat -I POSTROUTING 1 -s 192.168.22.0/24 ! -o br-cnt -j MASQUERADECreate overlay Filesystem from debian container fs
$ mount -vt overlay -o lowerdir=./fs/lower,upperdir=./fs/upper,workdir=./fs/work none ./fs/mergedMounting Virtual File Systems
$ mount -v --bind /dev ./fs/merged/devLaunch process namespace within fs/merged fs
$ unshare --fork --pid --net=/var/run/netns/cnt chroot ./fs/merged \
/usr/bin/env -i PATH=/bin:/usr/bin:/sbin:/usr/sbin TERM="$TERM" \
/bin/bash --login +h
# Mount proc within container
$ mount -vt proc proc /procConnect the container with br-cnt
$ ip link add veth-cnt type veth peer name br-veth-cnt
$ ip link set veth-cnt netns cnt
$ ip link set br-veth-cnt master br-cnt
$ ip link set br-veth-cnt up
$ ip -n cnt addr add 192.168.22.2/24 dev veth-cnt
$ ip -n cnt link set lo up
$ ip -n cnt link set veth-cnt up
$ ip -n cnt route add default via 192.168.22.1 dev veth-cnt
$ ip netns exec cnt ping -c 3 1.1.1.1Mount cgroup
$ mkdir /sys/fs/cgroup/memory/cnt
$ echo 10000000 > /sys/fs/cgroup/memory/cnt/memory.limit_in_bytes
$ echo 0 > /sys/fs/cgroup/memory/cnt/memory.swappiness
$ CHILD_PID=$(lsns -t pid | grep "[/]bin/bash --login +h" | awk '{print $4}')
$ echo $CHILD_PID > /sys/fs/cgroup/memory/cnt/tasksRun commands within container
$ apt update
$ apt install nginx procps curl -y
$ nginx
$ curl 127.0.0.1:80
$ curl 192.168.22.2:80 # from host
$ cat <( </dev/zero head -c 15m) <(sleep 15) | tailClean all
$ umount /proc # within container
$ exit # within container
$ umount -R ./fs/merged
$ ip link del br-veth-cnt
$ ip link del br-cnt
$ ip netns del cnt # grep cnt /proc/mountsFortunately for us there is a program that simplifies the usage of containers, for us this program is docker who manage the life-cycle of running a container. Let's see how does docker implement the namespaces running a container.
Install docker community edition from official script in get.docker.com
$ curl -fsSL https://get.docker.com -o install_docker.sh
$ less install_docker.sh # optional
$ sh install_docker.sh
$ usermod -aG docker $USER
$ newgrp docker # Or logout and loginCreate a bridge network using docker
$ docker network create mynetInspect bridge network, see subnet using IP
$ BR_NAME=$(ip link | grep -v '@' | awk '/br-/{gsub(":",""); print $2}')
$ ip addr show ${BR_NAME}Inspect Docker bridge network, see subnet using docker
$ docker network inspect mynet | grep SubnetRun an nginx web server
$ docker run --name nginx --net mynet -d --rm -p 8080:80 nginxInspect network namespace from nginx container
Create symlink from /proc to /var/run/netns
$ CONTAINER_ID=$(docker container ps | awk '/nginx/{print $1}')
$ CONTAINER_PID=$(docker inspect -f '{{.State.Pid}}' ${CONTAINER_ID})
$ mkdir -p /var/run/netns/
$ ln -sfT /proc/${CONTAINER_PID}/ns/net /var/run/netns/${CONTAINER_ID}Check network interface within namespace
$ ip netns list
$ ip -n ${CONTAINER_ID} link show eth0Check IP address of nginx container
$ ip -n ${CONTAINER_ID} addr show eth0
$ docker container inspect nginx | grep IPAddressCheck port forwarding from 8080 to 80
$ iptables -t nat -nvLRun a Ubuntu container with limited resources
$ docker run --name test_cg --memory=10m --cpus=.1 -it --rm ubuntuSee cgroup fs hierarchy
$ CONTAINER_ID=$(docker container ps --no-trunc | awk '/test_cg/{print $1}')
$ tree /sys/fs/cgroup/{memory,cpu}/docker/${CONTAINER_ID}See attached task to container cgroup
$ docker container top test_cg | tail -n 1 | awk '{print $2}' # container parent PID
$ cat /sys/fs/cgroup/{memory,cpu}/docker/${CONTAINER_ID}/tasks # the same as container parent PIDMonitoring the container
$ docker container stats test_cgGenerate CPU load
$ cat /dev/urandom &> /dev/nullGenerate Memory load
$ cat <( </dev/zero head -c 50m) <(sleep 30) | tailRun a ubuntu container with limited resources
$ docker run --name test_overlayfs -it --rm debianNOTE: The merged layer is the actual container Filesystem
Inspect lower layers with tree and less
$ docker container inspect test_overlayfs -f '{{.GraphDriver.Data.LowerDir}}' | awk 'BEGIN{FS=":"}{for (i=1; i<= NF; i++) print $i}' | while read low; do tree -L 2 $low; done | lessInspect upper layer (It's empty)
$ docker container inspect test_overlayfs -f '{{.GraphDriver.Data.UpperDir}}' | while read upper; do tree $upper; done | lessRun command withing the container
$ apt update && apt install nmap -yInspect (again) upper layer (now it's not empty)
$ docker container inspect test_overlayfs -f '{{.GraphDriver.Data.UpperDir}}' | while read upper; do tree $upper; done | lessRun docker container
$ docker run --name test_ps -it --rm ubuntuLaunch process within container
$ sleep 600 &
$ sleep 600 &
$ sleep 600 &
$ sleep 600 &
$ sleep 600 &
$ topSee container tree process from container
$ CONTAINER_PID=$(docker container top test_ps | sed -n '2p' | awk '{print $2}')
$ ps f -g ${CONTAINER_PID}List PID namespaces
$ lsns -t pidSee process using docker
$ docker container top test_psIn this tutorial we create our first container from scratch understanding what happen behind the scenes when we run a container. I hope this tutorial helps you to understand the technologies behind the linux containers.
