Skip to content

Extensible Cognitive Hybrid Intelligence for Deductive Neural Assistance. A neurosymbolic theorem proving platform that transforms Quill (Agda-only neural solver) into a universal multi-prover system with aspect tagging, OpenCyc integration, and DeepProbLog probabilistic logic.

License

Notifications You must be signed in to change notification settings

hyperpolymath/echidna

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ECHIDNA

MIT Palimpsest

*E*xtensible *C*ognitive *H*ybrid *I*ntelligence for *D*eductive *N*eural *A*ssistance

A neurosymbolic theorem proving platform supporting 12 theorem provers with aspect tagging, OpenCyc integration, and DeepProbLog probabilistic logic.

Features

  • 12 Theorem Prover Support: Universal backend supporting Agda, Coq/Rocq, Lean, Isabelle, Z3, CVC5, Metamath, HOL Light, Mizar, PVS, ACL2, and HOL4

  • Neurosymbolic AI: Neural proof synthesis combined with symbolic verification

  • Aspect Tagging: Intelligent proof categorization and analysis

  • OpenCyc Integration: Common sense reasoning with ontological knowledge

  • DeepProbLog: Probabilistic logic programming for uncertain reasoning

  • 4-Language Architecture: Rust (core), Julia (ML), ReScript (UI), Mercury/Logtalk (logic)

Quick Start

Prerequisites

  • Rust 1.75 or later

  • Julia 1.10 or later

  • Deno 1.40 or later (for ReScript)

  • Podman (NOT Docker)

  • Just command runner

Installation

# Clone the repository
git clone https://github.com/hyperpolymath/echidna.git
cd echidna

# Build the project
just build

# Run tests
just test

# Run ECHIDNA
just run

Using Podman Container

# Build container
podman build -f Containerfile -t echidna:latest .

# Run container
podman run -it echidna:latest

Architecture

Prover Tiers

Tier 1 (6 provers): - Agda - Dependent type theory - Coq/Rocq - Interactive theorem prover - Lean - Functional programming and proving - Isabelle - Higher-order logic - Z3 - SMT solver - CVC5 - SMT solver

Tier 2 (3 provers): - Metamath - Plain text verifier - HOL Light - Classical higher-order logic - Mizar - Mathematical vernacular

Tier 3 (2 provers): - PVS - Specification and verification - ACL2 - Applicative Common Lisp

Tier 4 (1 prover): - HOL4 - Higher-order logic

Technology Stack

  • Rust: Core logic, FFI, WASM compilation

  • Julia: Machine learning components (NO Python allowed!)

  • ReScript + Deno: User interface

  • Mercury/Logtalk: Optional logic reservoir

Key Components

  • src/rust/provers/: Complete Rust prover implementations

  • Aspect Tagging System: Proof classification and analysis

  • Neural Solver: ML-based proof synthesis

  • Universal Prover Abstraction: Unified interface for all 12 provers

Usage

Basic Theorem Proving

use echidna::provers::{ProverFactory, ProverKind};

let backend = ProverFactory::create(ProverKind::Agda, config)?;
let state = backend.parse_string("module T where\nid : {A : Set} → A → A\nid x = x").await?;
let verified = backend.verify_proof(&state).await?;

Using Multiple Provers

use echidna::provers::{ProverFactory, ProverKind};

// Try multiple provers
let provers = vec![ProverKind::Lean, ProverKind::Coq, ProverKind::Z3];
for kind in provers {
    let backend = ProverFactory::create(kind, config.clone())?;
    if let Ok(state) = backend.parse_string(theorem).await {
        if backend.verify_proof(&state).await.unwrap_or(false) {
            println!("Proved with {:?}", kind);
            break;
        }
    }
}

Neural Proof Synthesis

using EchidnaML

# Train neural model
model = train_proof_synthesizer(training_data)

# Generate proof candidates
candidates = synthesize_proofs(model, theorem)

# Verify with symbolic prover
for candidate in candidates
    if verify_proof(candidate)
        return candidate
    end
end

Development

Building from Source

# Install dependencies
just deps

# Build all components
just build

# Build specific component
just build-rust
just build-julia
just build-rescript

Running Tests

# Run all tests
just test

# Run Rust tests
cargo test

# Run unit tests only
cargo test --lib

# Run integration tests
cargo test --test integration_tests

Quality Checks

# Run all quality checks
just check

# Individual checks
just lint          # REUSE, rustfmt, clippy
just security      # Trivy, cargo-audit
just coverage      # Test coverage

Current Status

Completed: - All 12 prover backends implemented - 99 unit tests passing - 38 integration tests passing - RSR/CCCP compliance templates - Complete Rust trait system

In Progress: - Neural/ML integration (Julia components) - UI implementation (ReScript + Deno)

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Critical Constraints

  • NO PYTHON - Use Julia for all ML code

  • RSR/CCCP Compliance - Follow Rhodium Standard Repository guidelines

  • Justfile PRIMARY - Use Just, not Make

  • Podman not Docker - Always use Podman

  • Dual Licensing - MIT + Palimpsest v0.6

License

This project is dual-licensed under:

See NOTICE for complete license information.

Citation

If you use ECHIDNA in your research, please cite:

@software{echidna2025,
  title = {ECHIDNA: Extensible Cognitive Hybrid Intelligence for Deductive Neural Assistance},
  author = {ECHIDNA Project Contributors},
  year = {2025},
  url = {https://github.com/hyperpolymath/echidna},
  license = {MIT AND Palimpsest-0.6}
}

Acknowledgments

  • Built on the shoulders of the theorem proving community

  • See AUTHORS.md for contributor list

Contact


Version: 0.1.0 Status: Active Development Last Updated: 2026-01-10

About

Extensible Cognitive Hybrid Intelligence for Deductive Neural Assistance. A neurosymbolic theorem proving platform that transforms Quill (Agda-only neural solver) into a universal multi-prover system with aspect tagging, OpenCyc integration, and DeepProbLog probabilistic logic.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published

Contributors 2

  •  
  •