This is the official repo for SOCIALITE-LLAMA: An Instruction-Tuned Model for Social Scientific Tasks. Check out the paper here.
The model and dataset can be found at model and dataset.
We instruct tune Llama2 7B with the following default hyperparamerters:
| Hyperparameter | Llama 2 7B |
|---|---|
| LORA_R | 8 |
| LORA_ALPHA | 16 |
| LORA_DROPOUT | 0.05 |
| LORA_TARGET_MODULES | q_proj, v_proj |
| BATCH_SIZE | 64 |
| MICRO_BATCH_SIZE | 1 |
| LEARNING_RATE | 1e-4 |
| NUM_EPOCHS | 5 |
Instruction tuning command:
deepspeed --include localhost:0,1 finetuning.py --checkpoint /llama2-7b-hf --dataset hlab/SocialiteInstructions --OUTPUT_DIR /socialite_output_dir
For zero-shot evaluation, task_type indicates the task we want to perform the evaluation for.
For example, the command for zero-shot evaluation for HATESPEECH is:
CUDA_VISIBLE_DEVICES=0 python eval/zeroshot.py --checkpoint hlab/SocialiteLlama --dataset hlab/SocialiteInstructions --output_file /hate_speech_zeroshot_pred_socialite.csv --task_type HATESPEECH
The full list of task types can be found in the paper.
@inproceedings{
dey-etal-2024-socialite,
title={{SOCIALITE}-{LLAMA}: An Instruction-Tuned Model for Social Scientific Tasks},
author={Dey, Gourab and V Ganesan, Adithya and Lal, Yash Kumar and Shah, Manal and Sinha, Shreyashee and Matero, Matthew and Giorgi, Salvatore and Kulkarni, Vivek and Schwartz, H. Andrew},
address = "St. Julian’s, Malta",
booktitle={18th Conference of the European Chapter of the Association for Computational Linguistics},
year={2024},
publisher = {Association for Computational Linguistics}
}