Skip to content

gojiplus/rowvoi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

27 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

rowvoi: Minimal keys and row-wise value-of-information for disambiguating tabular records

PyPI version CI Downloads Python 3.11+ License: MIT Documentation

RowVoi is a Python library for interactive row disambiguation in tabular data. It helps you find the minimal set of columns needed to distinguish rows, and suggests which column to query next to reduce ambiguity most efficiently.

🎯 Key Features

  • Deterministic Key Finding: Use set cover algorithms to find minimal distinguishing column sets
  • Interactive Disambiguation: Step-by-step column selection using value-of-information
  • Multiple Policies: Greedy coverage, mutual information, model-based, and random selection strategies
  • Cost-Aware Selection: Support for column acquisition costs and budget constraints
  • Comprehensive Evaluation: Tools for benchmarking and comparing different strategies

πŸ“š Use Cases

Entity Resolution & Deduplication

  • Customer Matching: Which fields (email, phone, address) uniquely identify customers?
  • Product Catalogs: What attributes distinguish similar items across suppliers?

Interactive Data Collection

  • Survey Optimization: Which demographic questions resolve identity ambiguity?
  • Medical Diagnosis: What tests provide maximum diagnostic information?

Active Learning & Feature Selection

  • Costly Features: When API calls or lab tests are expensive, which ones matter most?
  • Human-in-the-Loop: Guide annotators to the most informative questions

πŸš€ Quick Start

Installation

pip install rowvoi

Basic Example

import pandas as pd
from rowvoi import find_key, CandidateState, GreedyCoveragePolicy, DisambiguationSession

# Your data
df = pd.DataFrame({
    'name': ['Alice', 'Alice', 'Bob', 'Bob'],
    'age': [25, 25, 30, 30], 
    'city': ['NYC', 'LA', 'NYC', 'SF'],
    'email': ['[email protected]', '[email protected]', '[email protected]', '[email protected]']
})

# Find minimal distinguishing columns
rows = [0, 1, 2, 3]
key = find_key(df, rows)  # -> ['email']

# Interactive disambiguation
state = CandidateState.uniform([0, 1])  # Alice records
policy = GreedyCoveragePolicy()
session = DisambiguationSession(df, [0, 1], policy=policy)

# Get next question
suggestion = session.next_question()
print(f"Ask about: {suggestion.col}")  # -> 'city' or 'email'

# Observe an answer and update
step = session.observe('city', 'NYC')  
print(f"Remaining candidates: {session.state.candidate_rows}")  # -> [0]

πŸ“– API Overview

Core Types

from rowvoi import CandidateState, FeatureSuggestion

# Track disambiguation state
state = CandidateState(
    candidate_rows=[0, 1, 2],           # Possible rows
    posterior=np.array([0.5, 0.3, 0.2]), # Probabilities  
    observed_cols={'name'},              # Asked columns
    observed_values={'name': 'Alice'}    # Observed values
)

# Column recommendation
suggestion = FeatureSuggestion(
    col='age',                    # Recommended column
    score=1.2,                   # Selection score
    expected_voi=0.8,           # Expected information gain
    marginal_cost=2.0           # Query cost
)

Deterministic Key Finding

from rowvoi import KeyProblem, find_key, plan_key_path

# Find minimal key
key = find_key(df, rows=[0,1,2], strategy="greedy")

# Different algorithms  
key_exact = find_key(df, rows, strategy="exact")       # Optimal (slow)
key_sa = find_key(df, rows, strategy="sa")             # Simulated annealing
key_ga = find_key(df, rows, strategy="ga")             # Genetic algorithm

# Plan acquisition sequence
path = plan_key_path(df, rows, costs={'name': 1, 'email': 5})
print(path.columns())  # -> ['name', 'age', ...]

Interactive Policies

from rowvoi import GreedyCoveragePolicy, CandidateMIPolicy, MIPolicy, RandomPolicy

# Greedy pairwise coverage
policy = GreedyCoveragePolicy(
    costs={'email': 5.0, 'name': 1.0},
    objective='entropy'  # or 'pairs'
)

# Mutual information on candidates only
policy = CandidateMIPolicy(normalize=True)

# Model-based mutual information  
from rowvoi import RowVoiModel
model = RowVoiModel(noise=0.1).fit(df)
policy = MIPolicy(model=model, objective='mi_over_cost')

# Random baseline
policy = RandomPolicy(seed=42)

Interactive Sessions

from rowvoi import DisambiguationSession, StopRules

# Create session
session = DisambiguationSession(
    df, [0,1,2,3], 
    policy=GreedyCoveragePolicy()
)

# Manual interaction
suggestion = session.next_question()
step = session.observe('age', 25)

# Automated session
stop = StopRules(max_steps=5, cost_budget=10.0, target_unique=True)
steps = session.run(stop, true_row=1)  # Simulate answering
print(f"Resolved in {len(steps)} steps")

Evaluation & Benchmarking

from rowvoi import sample_candidate_sets, evaluate_policies, evaluate_keys

# Sample test cases
candidate_sets = sample_candidate_sets(df, subset_size=4, n_samples=20)

# Compare key-finding methods
methods = {
    'greedy': lambda df, rows: find_key(df, rows, strategy='greedy'),
    'exact': lambda df, rows: find_key(df, rows, strategy='exact')
}
key_results = evaluate_keys(df, candidate_sets, methods)

# Compare interactive policies  
policies = {
    'greedy': GreedyCoveragePolicy(),
    'mi': CandidateMIPolicy(),
    'random': RandomPolicy(seed=42)
}
policy_stats = evaluate_policies(df, candidate_sets, policies)
for stat in policy_stats:
    print(f"{stat.name}: {stat.mean_steps:.1f} steps, {stat.success_rate:.1%} success")

πŸ”¬ Advanced Features

Cost-Aware Selection

# Define column costs
costs = {
    'name': 1.0,      # Cheap: already have
    'age': 2.0,       # Moderate: need to ask  
    'email': 10.0,    # Expensive: need verification
    'ssn': 50.0       # Very expensive: sensitive
}

policy = GreedyCoveragePolicy(costs=costs)
session = DisambiguationSession(df, rows, policy=policy, feature_costs=costs)

# Budget-constrained planning
path = plan_key_path(df, rows, costs=costs)
affordable_cols = path.prefix_for_budget(budget=5.0)

Model-Based Selection

# Train on historical data
model = RowVoiModel(
    noise=0.05,           # Account for measurement noise
    normalize_cols=True   # Normalize feature distributions
).fit(df)

# Use for adaptive selection
policy = MIPolicy(model=model, feature_costs=costs)
suggestion = policy.suggest(df, state)
print(f"Expected VoI: {suggestion.expected_voi:.3f} bits")

Probabilistic Methods

from rowvoi import find_key_probabilistic, plan_key_path_probabilistic

# Account for noise/uncertainty
key = find_key_probabilistic(df, rows, noise_rate=0.1)
path = plan_key_path_probabilistic(df, rows, noise_rate=0.1, costs=costs)

πŸ“Š Complete Examples

Example 1: Customer Deduplication

import pandas as pd
from rowvoi import find_key, GreedyCoveragePolicy, DisambiguationSession

# Customer database with potential duplicates
customers = pd.DataFrame({
    'first_name': ['John', 'John', 'Jane', 'Jane'],
    'last_name': ['Smith', 'Smith', 'Doe', 'Smith'], 
    'email': ['[email protected]', '[email protected]', '[email protected]', '[email protected]'],
    'phone': ['555-0101', '555-0102', '555-0201', '555-0301'],
    'zip_code': ['10001', '10002', '10001', '10001']
})

# Find minimal fields for disambiguation
duplicates = [0, 1]  # Two "John Smith" records
key = find_key(customers, duplicates)
print(f"Minimal distinguishing fields: {key}")

# Interactive disambiguation with costs
costs = {'email': 1, 'phone': 2, 'zip_code': 1, 'first_name': 0, 'last_name': 0}
policy = GreedyCoveragePolicy(costs=costs, objective='entropy')
session = DisambiguationSession(customers, duplicates, policy=policy, feature_costs=costs)

# Simulate resolving the duplicate
suggestion = session.next_question()
print(f"First question: {suggestion.col}")
step = session.observe(suggestion.col, customers.iloc[0][suggestion.col])
print(f"Resolved: {session.state.is_unique}")

Example 2: Survey Optimization

from rowvoi import CandidateMIPolicy, StopRules, evaluate_policies

# Survey response data
survey = pd.DataFrame({
    'age_group': ['18-25', '26-35', '18-25', '36-45', '26-35'],
    'income': ['<50k', '50-100k', '<50k', '>100k', '50-100k'],
    'education': ['HS', 'College', 'HS', 'Graduate', 'College'],
    'location': ['Urban', 'Suburban', 'Rural', 'Urban', 'Suburban']
})

# Compare question-asking strategies
policies = {
    'coverage': GreedyCoveragePolicy(objective='entropy'),
    'mutual_info': CandidateMIPolicy(normalize=True),
    'random': RandomPolicy(seed=42)
}

# Test on random respondent groups
candidate_sets = sample_candidate_sets(survey, subset_size=3, n_samples=50)
stop_rules = StopRules(max_steps=3, target_unique=True)

stats = evaluate_policies(survey, candidate_sets, policies, stop=stop_rules)
for stat in stats:
    print(f"{stat.name}: {stat.mean_steps:.1f} questions, "
          f"{stat.success_rate:.0%} identification rate")

πŸ§ͺ Algorithm Details

Set Cover for Keys

Finding minimal distinguishing columns is NP-hard set cover:

  • Universe: All pairs of rows that need distinguishing
  • Sets: Each column covers pairs it separates
  • Goal: Minimum cost column set covering all pairs

RowVoi implements:

  • Greedy: Fast O(nm log m) approximation with ln(m) ratio guarantee
  • Exact: Branch-and-bound for optimal solutions (small problems)
  • Metaheuristics: Simulated annealing and genetic algorithms for large problems

Value of Information

For interactive selection, RowVoi uses mutual information:

I(RowID; Column | Observed) = H(RowID | Observed) - E[H(RowID | Observed, Column)]

Where:

  • H(RowID | Observed): Current uncertainty (entropy) over which row is correct
  • E[H(RowID | Observed, Column)]: Expected uncertainty after observing the column
  • Higher mutual information = more disambiguation value

Policy Strategies

  • GreedyCoveragePolicy: Maximize newly distinguished pairs per cost
  • CandidateMIPolicy: Maximize mutual information on current candidates
  • MIPolicy: Use fitted model for robust MI estimation with noise handling
  • RandomPolicy: Random selection baseline for comparison

πŸ“ Development

Running Tests

uv run pytest tests/ -v

Code Quality

uv run ruff check .
uv run mypy .

Building Documentation

cd docs && make html

🀝 Contributing

Contributions welcome! Please see CONTRIBUTING.md for guidelines.

πŸ“„ License

MIT License - see LICENSE for details.

πŸ“š Citation

@software{sood2025rowvoi,
  author       = {Sood, Gaurav},
  title        = {RowVoi: Interactive Row Disambiguation with Value-of-Information},
  year         = {2025},
  publisher    = {GitHub},
  url          = {https://github.com/gojiplus/rowvoi},
  version      = {0.2.0}
}

About

Minimal keys and row-wise value-of-information for disambiguating tabular records

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published