Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions client.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,14 @@

import src.Log
from src.RpcClient import RpcClient
from src.Scheduler import Scheduler
from src.Schedule_zb import Scheduler


parser = argparse.ArgumentParser(description="Split learning framework")
parser.add_argument('--layer_id', type=int, required=True, help='ID of layer, start from 1')
parser.add_argument('--device', type=str, required=False, help='Device of client')
parser.add_argument('--event_time', type=bool, default=False, required=False, help='Log event time for debug mode')
parser.add_argument('--performance', type=int, required=False, help='Cluster by device')
parser.add_argument('--p', type=int, required=False, help='Cluster by device')

args = parser.parse_args()

Expand Down Expand Up @@ -45,15 +45,15 @@
connection = pika.BlockingConnection(pika.ConnectionParameters(address, 5672, f'{virtual_host}', credentials))
channel = connection.channel()

if args.performance is None:
if args.p is None:
performance = -1
else:
performance = args.performance
performance = args.p

if __name__ == "__main__":
src.Log.print_with_color("[>>>] Client sending registration message to server...", "red")
data = {"action": "REGISTER", "client_id": client_id, "layer_id": args.layer_id, "performance": performance, "message": "Hello from Client!"}
scheduler = Scheduler(client_id, args.layer_id, channel, device, args.event_time)
scheduler = Scheduler(client_id, args.layer_id, channel, device)
client = RpcClient(client_id, args.layer_id, address, username, password, scheduler.train_on_device, device)
client.send_to_server(data)
client.wait_response()
3 changes: 3 additions & 0 deletions config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,9 @@ server:
AffinityPropagation:
damping: 0.9
max_iter: 1000
fbw:
enable: True
chunk: 1

rabbit:
address: 127.0.0.1
Expand Down
9 changes: 6 additions & 3 deletions src/RpcClient.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,12 +74,14 @@ def response_message(self, body):
label_count = self.response['label_count']
num_layers = self.response['num_layers']
clip_grad_norm = self.response['clip_grad_norm']
chunk = self.response['chunk']
if self.label_count is None:
self.label_count = label_count
if self.response['cluster'] is not None:
self.cluster = self.response['cluster']
if self.label_count is not None:
src.Log.print_with_color(f"Label distribution of client: {self.label_count}", "yellow")

if self.model is None:
klass = getattr(src.Model, model_name)
full_model = klass()
Expand Down Expand Up @@ -116,11 +118,11 @@ def response_message(self, body):
subset = torch.utils.data.Subset(self.train_set, selected_indices)
train_loader = torch.utils.data.DataLoader(subset, batch_size=batch_size, shuffle=True)
if cut_layers[1] != 0:
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, train_loader, self.cluster, special, alone_train=False)
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, train_loader, self.cluster, special, alone_train=False, chunk=chunk)
else:
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, train_loader, self.cluster, special, alone_train=True)
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, train_loader, self.cluster, special, alone_train=True, chunk=chunk)
else:
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, None, self.cluster, special)
result, size = self.train_func(self.model, self.global_model, self.label_count, lr, momentum, clip_grad_norm, compute_loss, num_layers, control_count, None, self.cluster, special, chunk=chunk)

# Stop training, then send parameters to server
model_state_dict = self.model.state_dict()
Expand All @@ -132,6 +134,7 @@ def response_message(self, body):
"message": "Sent parameters to Server", "parameters": model_state_dict}
src.Log.print_with_color("[>>>] Client sent parameters to server", "red")
self.send_to_server(data)
self.model = None
return True
elif action == "STOP":
return False
Expand Down
Loading