11"""
22TEM: AEMR TEM-FAST 48 system
3- =================
4- **In this example we compute the TEM response from the TEM-FAST 48 system.
3+ ============================
54
6- This example was contributed by Lukas Aigner (@aignerlukas), who was interested
5+ **In this example we compute the TEM response from the TEM-FAST 48 system.**
6+
7+ This example was contributed by Lukas Aigner (`@aignerlukas
8+ <https://github.com/aignerlukas>`_), who was interested
79in modelling the TEM-FAST system, which is used at the TU Wien.
810If you are interested and want to use this work please have a look at the
9- corresponding paper: https://doi.org/10.1016/j.jappgeo. 2024.105334
11+ corresponding paper Aigner et al. ( 2024).
1012
1113The modeller ``empymod`` models the electromagnetic (EM) full wavefield Greens
1214function for electric and magnetic point sources and receivers. As such, it can
1719What is not included in ``empymod`` at this moment (but hopefully in the
1820future), but is required to model TEM data, is to **account for arbitrary
1921source waveform**, and to apply a **lowpass filter**. So we generate these two
20- things here, and create our own wrapper to model TEM data.
22+ things here, and create our own wrapper to model TEM data. See also the example
23+ :ref:`sphx_glr_gallery_tdomain_tem_walktem.py`, on which this example
24+ builds upon.
25+
26+ **References**
27+
28+ - **Aigner, L., D. Werthmüller, and A. Flores Orozco, 2024**,
29+ Sensitivity analysis of inverted model parameters from transient
30+ electromagnetic measurements affected by induced polarization effects;
31+ *Journal of Applied Geophysics*, Volume 223, Pages 105334, doi:
32+ `10.1016/j.jappgeo.2024.105334
33+ <https://doi.org/10.1016/j.jappgeo.2024.105334>`_.
2134
2235"""
2336import empymod
2740from matplotlib .ticker import LogLocator , NullFormatter
2841from scipy .interpolate import InterpolatedUnivariateSpline as iuSpline
2942plt .style .use ('ggplot' )
30-
43+ # sphinx_gallery_thumbnail_number = 2
3144
3245###############################################################################
3346# 1. TEM-FAST 48 Waveform and other characteristics
47+ # -------------------------------------------------
48+ #
3449# The TEM-FASt system uses a "time-key" value to determine the number of gates,
3550# the front ramp and the length of the current pulse.
36- # We are using values that correspond to a time-key of 5
37- # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51+ # We are using values that correspond to a time-key of 5.
3852turn_on_ramp = - 3.0E-06
3953turn_off_ramp = 0.95E-06
4054on_time = 3.75E-03
5973plt .plot (np .r_ [- 9 , waveform_times * 1e3 , 2 ], np .r_ [0 , waveform_current , 0 ])
6074plt .xlabel ('Time (ms)' )
6175plt .xlim ([- 4 , 0.5 ])
62- plt .legend ()
6376
6477
6578###############################################################################
@@ -312,7 +325,7 @@ def pelton_res(inp, p_dict):
312325
313326###############################################################################
314327# 3. Computation non-IP
315- # --------------
328+ # ---------------------
316329
317330depths = [8 , 20 ]
318331rhos = [25 , 5 , 50 ]
@@ -326,7 +339,7 @@ def pelton_res(inp, p_dict):
326339
327340###############################################################################
328341# 4. Computation with IP
329- # --------------
342+ # ----------------------
330343depths = [8 , 20 ]
331344rhos = [25 , 5 , 50 ]
332345charg = np .r_ [0 , 0.9 , 0 ]
0 commit comments