|
| 1 | +""" |
| 2 | +TEM: AEMR TEM-FAST 48 system |
| 3 | +================= |
| 4 | +**In this example we compute the TEM response from the TEM-FAST 48 system. |
| 5 | +
|
| 6 | +This example was contributed by Lukas Aigner (@aignerlukas), who was interested |
| 7 | +in modelling the TEM-FAST system, which is used at the TU Wien. |
| 8 | +If you are interested and want to use this work please have a look at the |
| 9 | +corresponding paper: https://doi.org/10.1016/j.jappgeo.2024.105334 |
| 10 | +
|
| 11 | +The modeller ``empymod`` models the electromagnetic (EM) full wavefield Greens |
| 12 | +function for electric and magnetic point sources and receivers. As such, it can |
| 13 | +model any EM method from DC to GPR. However, how to actually implement a |
| 14 | +particular EM method and survey layout can be tricky, as there are many more |
| 15 | +things involved than just computing the EM Greens function. |
| 16 | +
|
| 17 | +What is not included in ``empymod`` at this moment (but hopefully in the |
| 18 | +future), but is required to model TEM data, is to **account for arbitrary |
| 19 | +source waveform**, and to apply a **lowpass filter**. So we generate these two |
| 20 | +things here, and create our own wrapper to model TEM data. |
| 21 | +
|
| 22 | +""" |
| 23 | +import empymod |
| 24 | +import numpy as np |
| 25 | +import matplotlib.pyplot as plt |
| 26 | +from scipy.special import roots_legendre |
| 27 | +from matplotlib.ticker import LogLocator, NullFormatter |
| 28 | +from scipy.interpolate import InterpolatedUnivariateSpline as iuSpline |
| 29 | +plt.style.use('ggplot') |
| 30 | + |
| 31 | + |
| 32 | +############################################################################### |
| 33 | +# 1. TEM-FAST 48 Waveform and other characteristics |
| 34 | +# The TEM-FASt system uses a "time-key" value to determine the number of gates, |
| 35 | +# the front ramp and the length of the current pulse. |
| 36 | +# We are using values that correspond to a time-key of 5 |
| 37 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 38 | +turn_on_ramp = -3.0E-06 |
| 39 | +turn_off_ramp = 0.95E-06 |
| 40 | +on_time = 3.75E-03 |
| 41 | + |
| 42 | +injected_current = 4.1 # Ampere |
| 43 | +time_gates = np.r_[4.060e+00, 5.070e+00, 6.070e+00, 7.080e+00, |
| 44 | + 8.520e+00, 1.053e+01, 1.255e+01, 1.456e+01, |
| 45 | + 1.744e+01, 2.146e+01, 2.549e+01, 2.950e+01, |
| 46 | + 3.528e+01, 4.330e+01, 5.140e+01, 5.941e+01, # time-key 1 |
| 47 | + 7.160e+01, 8.760e+01, 1.036e+02, 1.196e+02, # time-key 2 |
| 48 | + 1.436e+02, 1.756e+02, 2.076e+02, 2.396e+02, # time-key 3 |
| 49 | + 2.850e+02, 3.500e+02, 4.140e+02, 4.780e+02, # time-key 4 |
| 50 | + 5.700e+02, 6.990e+02, 8.280e+02, 9.560e+02, # time-key 5 |
| 51 | + ] * 1e-6 # from us to s |
| 52 | + |
| 53 | +waveform_times = np.r_[turn_on_ramp - on_time, -on_time, |
| 54 | + 0.000E+00, turn_off_ramp] |
| 55 | +waveform_current = np.r_[0.0, injected_current, injected_current, 0.0] |
| 56 | + |
| 57 | +plt.figure() |
| 58 | +plt.title('Waveform') |
| 59 | +plt.plot(np.r_[-9, waveform_times*1e3, 2], np.r_[0, waveform_current, 0]) |
| 60 | +plt.xlabel('Time (ms)') |
| 61 | +plt.xlim([-4, 0.5]) |
| 62 | +plt.legend() |
| 63 | + |
| 64 | + |
| 65 | +############################################################################### |
| 66 | +# 2. ``empymod`` implementation |
| 67 | +# ----------------------------- |
| 68 | +def waveform(times, resp, times_wanted, wave_time, wave_amp, nquad=3): |
| 69 | + """Apply a source waveform to the signal. |
| 70 | +
|
| 71 | + Parameters |
| 72 | + ---------- |
| 73 | + times : ndarray |
| 74 | + Times of computed input response; should start before and end after |
| 75 | + `times_wanted`. |
| 76 | +
|
| 77 | + resp : ndarray |
| 78 | + EM-response corresponding to `times`. |
| 79 | +
|
| 80 | + times_wanted : ndarray |
| 81 | + Wanted times. |
| 82 | +
|
| 83 | + wave_time : ndarray |
| 84 | + Time steps of the wave. |
| 85 | +
|
| 86 | + wave_amp : ndarray |
| 87 | + Amplitudes of the wave corresponding to `wave_time`, usually |
| 88 | + in the range of [0, 1]. |
| 89 | +
|
| 90 | + nquad : int |
| 91 | + Number of Gauss-Legendre points for the integration. Default is 3. |
| 92 | +
|
| 93 | + Returns |
| 94 | + ------- |
| 95 | + resp_wanted : ndarray |
| 96 | + EM field for `times_wanted`. |
| 97 | +
|
| 98 | + """ |
| 99 | + |
| 100 | + # Interpolate on log. |
| 101 | + PP = iuSpline(np.log10(times), resp) |
| 102 | + |
| 103 | + # Wave time steps. |
| 104 | + dt = np.diff(wave_time) |
| 105 | + dI = np.diff(wave_amp) |
| 106 | + dIdt = dI/dt |
| 107 | + |
| 108 | + # Gauss-Legendre Quadrature; 3 is generally good enough. |
| 109 | + # (Roots/weights could be cached.) |
| 110 | + g_x, g_w = roots_legendre(nquad) |
| 111 | + |
| 112 | + # Pre-allocate output. |
| 113 | + resp_wanted = np.zeros_like(times_wanted) |
| 114 | + |
| 115 | + # Loop over wave segments. |
| 116 | + for i, cdIdt in enumerate(dIdt): |
| 117 | + |
| 118 | + # We only have to consider segments with a change of current. |
| 119 | + if cdIdt == 0.0: |
| 120 | + continue |
| 121 | + |
| 122 | + # If wanted time is before a wave element, ignore it. |
| 123 | + ind_a = wave_time[i] < times_wanted |
| 124 | + if ind_a.sum() == 0: |
| 125 | + continue |
| 126 | + |
| 127 | + # If wanted time is within a wave element, we cut the element. |
| 128 | + ind_b = wave_time[i+1] > times_wanted[ind_a] |
| 129 | + |
| 130 | + # Start and end for this wave-segment for all times. |
| 131 | + ta = times_wanted[ind_a]-wave_time[i] |
| 132 | + tb = times_wanted[ind_a]-wave_time[i+1] |
| 133 | + tb[ind_b] = 0.0 # Cut elements |
| 134 | + |
| 135 | + # Gauss-Legendre for this wave segment. See |
| 136 | + # https://en.wikipedia.org/wiki/Gaussian_quadrature#Change_of_interval |
| 137 | + # for the change of interval, which makes this a bit more complex. |
| 138 | + logt = np.log10(np.outer((tb-ta)/2, g_x)+(ta+tb)[:, None]/2) |
| 139 | + fact = (tb-ta)/2*cdIdt |
| 140 | + resp_wanted[ind_a] += fact*np.sum(np.array(PP(logt)*g_w), axis=1) |
| 141 | + |
| 142 | + return resp_wanted |
| 143 | + |
| 144 | + |
| 145 | +############################################################################### |
| 146 | +def get_time(time, r_time): |
| 147 | + """Additional time for ramp. |
| 148 | +
|
| 149 | + Because of the arbitrary waveform, we need to compute some times before and |
| 150 | + after the actually wanted times for interpolation of the waveform. |
| 151 | +
|
| 152 | + Some implementation details: The actual times here don't really matter. We |
| 153 | + create a vector of time.size+2, so it is similar to the input times and |
| 154 | + accounts that it will require a bit earlier and a bit later times. Really |
| 155 | + important are only the minimum and maximum times. The Fourier DLF, with |
| 156 | + `pts_per_dec=-1`, computes times from minimum to at least the maximum, |
| 157 | + where the actual spacing is defined by the filter spacing. It subsequently |
| 158 | + interpolates to the wanted times. Afterwards, we interpolate those again to |
| 159 | + compute the actual waveform response. |
| 160 | +
|
| 161 | + Note: We could first call `waveform`, and get the actually required times |
| 162 | + from there. This would make this function obsolete. It would also |
| 163 | + avoid the double interpolation, first in `empymod.model.time` for the |
| 164 | + Fourier DLF with `pts_per_dec=-1`, and second in `waveform`. Doable. |
| 165 | + Probably not or marginally faster. And the code would become much |
| 166 | + less readable. |
| 167 | +
|
| 168 | + Parameters |
| 169 | + ---------- |
| 170 | + time : ndarray |
| 171 | + Desired times |
| 172 | +
|
| 173 | + r_time : ndarray |
| 174 | + Waveform times |
| 175 | +
|
| 176 | + Returns |
| 177 | + ------- |
| 178 | + time_req : ndarray |
| 179 | + Required times |
| 180 | + """ |
| 181 | + tmin = np.log10(max(time.min()-r_time.max(), 1e-10)) |
| 182 | + tmax = np.log10(time.max()-r_time.min()) |
| 183 | + return np.logspace(tmin, tmax, time.size+2) |
| 184 | + |
| 185 | + |
| 186 | +############################################################################### |
| 187 | +def temfast(off_time, waveform_times, model, square_side=12.5): |
| 188 | + """Custom wrapper of empymod.model.bipole. |
| 189 | +
|
| 190 | + Here, we compute TEM-FAST data using the ``empymod.model.bipole`` routine |
| 191 | + as an example. This function is based upon the Walk TEM example. |
| 192 | +
|
| 193 | + We model the big source square loop by computing only half of one side of |
| 194 | + the electric square loop and approximating the finite length dipole with 3 |
| 195 | + point dipole sources. The result is then multiplied by 8, to account for |
| 196 | + all eight half-sides of the square loop. |
| 197 | +
|
| 198 | + The implementation here assumes a central loop configuration, where the |
| 199 | + receiver (1 m2 area) is at the origin, and the source is a |
| 200 | + square_side x square_side m electric loop, centered around the origin. |
| 201 | +
|
| 202 | + Note: This approximation of only using half of one of the four sides |
| 203 | + obviously only works for central, horizontal square loops. If your |
| 204 | + loop is arbitrary rotated, then you have to model all four sides of |
| 205 | + the loop and sum it up. |
| 206 | +
|
| 207 | +
|
| 208 | + Parameters |
| 209 | + ---------- |
| 210 | + off_time : ndarray |
| 211 | + times at which the secondary magnetic field will be measured |
| 212 | +
|
| 213 | + waveform_times : ndarray |
| 214 | + Depths of the resistivity model (see ``empymod.model.bipole`` for more |
| 215 | + info.) |
| 216 | +
|
| 217 | + depth : ndarray |
| 218 | + Depths of the resistivity model (see ``empymod.model.bipole`` for more |
| 219 | + info.) |
| 220 | +
|
| 221 | + res : ndarray |
| 222 | + Resistivities of the resistivity model (see ``empymod.model.bipole`` |
| 223 | + for more info.) |
| 224 | +
|
| 225 | + square_side : float |
| 226 | + sige length of the square loop in meter. |
| 227 | +
|
| 228 | + Returns |
| 229 | + ------- |
| 230 | + TEM-FAST waveform : EMArray |
| 231 | + TEM-FAST response (dB/dt). |
| 232 | +
|
| 233 | + """ |
| 234 | + |
| 235 | + if 'm' in model: |
| 236 | + depth = model['depth'] |
| 237 | + res = model |
| 238 | + del res['depth'] |
| 239 | + else: |
| 240 | + res = model['res'] |
| 241 | + depth = model['depth'] |
| 242 | + |
| 243 | + # === GET REQUIRED TIMES === |
| 244 | + time = get_time(off_time, waveform_times) |
| 245 | + |
| 246 | + # === GET REQUIRED FREQUENCIES === |
| 247 | + time, freq, ft, ftarg = empymod.utils.check_time( |
| 248 | + time=time, # Required times |
| 249 | + signal=1, # Switch-on response |
| 250 | + ft='dlf', # Use DLF |
| 251 | + ftarg={'dlf': 'key_601_2009'}, |
| 252 | + verb=2, |
| 253 | + ) |
| 254 | + |
| 255 | + # === COMPUTE FREQUENCY-DOMAIN RESPONSE === |
| 256 | + # We only define a few parameters here. You could extend this for any |
| 257 | + # parameter possible to provide to empymod.model.bipole. |
| 258 | + hs = square_side / 2 # half side length |
| 259 | + EM = empymod.model.bipole( |
| 260 | + src=[hs, hs, 0, hs, 0, 0], # El. bipole source; half of one side. |
| 261 | + rec=[0, 0, 0, 0, 90], # Receiver at the origin, vertical. |
| 262 | + depth=depth, # Depth-model, including air-interface. |
| 263 | + res=res, # if with IP, res is a dictionary with |
| 264 | + # all params and the function |
| 265 | + freqtime=freq, # Required frequencies. |
| 266 | + mrec=True, # It is an el. source, but a magn. rec. |
| 267 | + strength=8, # To account for 4 sides of square loop. |
| 268 | + srcpts=3, # Approx. the finite dip. with 3 points. |
| 269 | + htarg={'dlf': 'key_401_2009'}, # Short filter, so fast. |
| 270 | + ) |
| 271 | + |
| 272 | + # Multiply the frequecny-domain result with |
| 273 | + # \mu for H->B, and i\omega for B->dB/dt. |
| 274 | + EM *= 2j*np.pi*freq*4e-7*np.pi |
| 275 | + |
| 276 | + # === Butterworth-type filter (implemented from simpegEM1D.Waveforms.py)=== |
| 277 | + cutofffreq = 1e8 # determined empirically for TEM-FAST |
| 278 | + h = (1+1j*freq/cutofffreq)**-1 # First order type |
| 279 | + h *= (1+1j*freq/3e5)**-1 |
| 280 | + EM *= h |
| 281 | + |
| 282 | + # === CONVERT TO TIME DOMAIN === |
| 283 | + delay_rst = 0 # unknown for TEM-FAST, therefore 0 |
| 284 | + EM, _ = empymod.model.tem(EM[:, None], np.array([1]), |
| 285 | + freq, time+delay_rst, 1, ft, ftarg) |
| 286 | + EM = np.squeeze(EM) |
| 287 | + |
| 288 | + # === APPLY WAVEFORM === |
| 289 | + return waveform(time, EM, off_time, waveform_times, waveform_current) |
| 290 | + |
| 291 | + |
| 292 | +############################################################################### |
| 293 | +def pelton_res(inp, p_dict): |
| 294 | + """ Pelton et al. (1978). |
| 295 | + code from: https://empymod.emsig.xyz/en/stable/examples/time_domain/ |
| 296 | + cole_cole_ip.html#sphx-glr-examples-time-domain-cole-cole-ip-py |
| 297 | + """ |
| 298 | + |
| 299 | + # Compute complex resistivity from Pelton et al. |
| 300 | + # print('\n shape: p_dict["freq"]\n', p_dict['freq'].shape) |
| 301 | + iwtc = np.outer(2j*np.pi*p_dict['freq'], inp['tau'])**inp['c'] |
| 302 | + |
| 303 | + rhoH = inp['rho_0'] * (1 - inp['m']*(1 - 1/(1 + iwtc))) |
| 304 | + rhoV = rhoH*p_dict['aniso']**2 |
| 305 | + |
| 306 | + # Add electric permittivity contribution |
| 307 | + etaH = 1/rhoH + 1j*p_dict['etaH'].imag |
| 308 | + etaV = 1/rhoV + 1j*p_dict['etaV'].imag |
| 309 | + |
| 310 | + return etaH, etaV |
| 311 | + |
| 312 | + |
| 313 | +############################################################################### |
| 314 | +# 3. Computation non-IP |
| 315 | +# -------------- |
| 316 | + |
| 317 | +depths = [8, 20] |
| 318 | +rhos = [25, 5, 50] |
| 319 | +model = {'depth': np.r_[0, depths], |
| 320 | + 'res': np.r_[2e14, rhos]} |
| 321 | + |
| 322 | +# Compute conductive model |
| 323 | +response = temfast(off_time=time_gates, waveform_times=waveform_times, |
| 324 | + model=model) |
| 325 | + |
| 326 | + |
| 327 | +############################################################################### |
| 328 | +# 4. Computation with IP |
| 329 | +# -------------- |
| 330 | +depths = [8, 20] |
| 331 | +rhos = [25, 5, 50] |
| 332 | +charg = np.r_[0, 0.9, 0] |
| 333 | +taus = np.r_[1e-6, 5e-4, 1e-6] |
| 334 | +cs = np.r_[0, 0.9, 0] |
| 335 | + |
| 336 | +eta_func = pelton_res |
| 337 | +depth = np.r_[0, depths] |
| 338 | +model = {'depth': depth, |
| 339 | + 'res': np.r_[2e14, rhos], |
| 340 | + 'rho_0': np.r_[2e14, rhos], |
| 341 | + 'm': np.r_[0, charg], |
| 342 | + 'tau': np.r_[1e-7, taus], |
| 343 | + 'c': np.r_[0.01, cs], |
| 344 | + 'func_eta': eta_func} |
| 345 | + |
| 346 | + |
| 347 | +# Compute conductive model |
| 348 | +response_ip = temfast(off_time=time_gates, waveform_times=waveform_times, |
| 349 | + model=model) |
| 350 | + |
| 351 | + |
| 352 | +############################################################################### |
| 353 | +# 5. Comparison |
| 354 | +# ------------- |
| 355 | + |
| 356 | +plt.figure(figsize=(5, 5), constrained_layout=True) |
| 357 | + |
| 358 | +# Plot result of model 1 |
| 359 | +ax1 = plt.subplot(111) |
| 360 | +plt.title('TEM-FAST responses') |
| 361 | + |
| 362 | +# empymod |
| 363 | +plt.plot(time_gates, response, 'r.--', ms=7, label="response") |
| 364 | +plt.plot(time_gates, abs(response_ip), 'kx:', ms=7, label="response with IP") |
| 365 | + |
| 366 | +sub0 = response_ip[response_ip < 0] |
| 367 | +tg_sub0 = time_gates[response_ip < 0] |
| 368 | +plt.plot(tg_sub0, abs(sub0), marker='s', ls='none', |
| 369 | + mfc='none', ms=8, mew=1, |
| 370 | + mec='c', label="negative readings") |
| 371 | + |
| 372 | +# Plot settings |
| 373 | +plt.xscale('log') |
| 374 | +plt.yscale('log') |
| 375 | +plt.xlabel("Time(s)") |
| 376 | +plt.ylabel(r"$\mathrm{d}\mathrm{B}_\mathrm{z}\,/\,\mathrm{d}t$") |
| 377 | +plt.grid(which='both', c='w') |
| 378 | +plt.legend(title='Data', loc=1) |
| 379 | + |
| 380 | + |
| 381 | +# Force minor ticks on logscale |
| 382 | +ax1.yaxis.set_minor_locator(LogLocator(subs='all', numticks=20)) |
| 383 | +ax1.yaxis.set_minor_formatter(NullFormatter()) |
| 384 | +plt.grid(which='both', c='w') |
| 385 | + |
| 386 | +############################################################################### |
| 387 | +empymod.Report() |
0 commit comments