Skip to content

emmanuelubachi/data-analysis-project-starter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Analysis Project Starter Template

A fully structured, production-ready Data Analysis Project Starter designed for analysts, data scientists, and teams who want a scalable, organized, and reproducible foundation for data-driven projects.

This template enforces best practices in folder hierarchy, documentation, testing, and configuration — helping you focus on insights rather than setup.


🚀 Getting Started

1. Use This Template (Recommended)

Click “Use this template” on GitHub to create a new repository from this starter. You’ll get a clean copy with no commit history.

2. Or Clone via Degit

If you prefer a lightweight copy without git history:

npx degit yourusername/data-analysis-project-starter my-project
cd my-project

(Replace yourusername with your GitHub handle and my-project with your project name.)


🧭 Folder Structure Overview

data-analysis-project-starter/
│
├── config/
│   ├── config.yaml
│   ├── credentials_template.yaml
│   └── README.md
│
├── data/
│   ├── raw/
│   ├── processed/
│   ├── validated/
│   ├── final/
│   └── README.md
│
├── docs/
│   ├── SOP.md
│   ├── workflow.md
│   ├── project_overview.md
│   ├── findings_report.md
│   └── data_dictionary.md
│
├── notebooks/
│   ├── exploration.ipynb
│   ├── modeling.ipynb
│   └── experiments.ipynb
│
├── references/
│   ├── articles/
│   ├── datasets/
│   └── README.md
│
├── src/
│   ├── EDA/
│   │   ├── cleaning/
│   │   │   ├── clean_data.py
│   │   │   └── handle_missing_values.py
│   │   └── exploration/
│   │       ├── visualize_distributions.py
│   │       └── correlations.py
│   │
│   ├── quality_assurance/
│   │   ├── validate_data.py
│   │   └── detect_anomalies.py
│   │
│   ├── transformations/
│   │   ├── feature_engineering.py
│   │   ├── normalization.py
│   │   └── outlier_treatment.py
│   │
│   └── utils/
│       ├── helpers.py
│       ├── io_utils.py
│       └── logger.py
│
├── tests/
│   ├── test_data_validation.py
│   ├── test_transformations.py
│   └── test_utils.py
│
├── logs/
│   ├── qa_logs/
│   └── processing_logs/
│
├── .gitignore
├── LICENSE
├── requirements.txt
├── Makefile (optional)
└── README.md

📂 Folder-by-Folder Breakdown

config/

Centralized project settings.

  • config.yaml: Main configuration file (paths, parameters, etc.)
  • credentials_template.yaml: Safe template for environment variables (no secrets)

data/

Your data pipeline layers.

  • raw/: Unmodified source data
  • processed/: Cleaned and intermediate datasets
  • validated/: QA-checked data outputs
  • final/: Ready-for-analysis or model-ready datasets

docs/

Project documentation and reporting.

  • SOP.md: Standard Operating Procedure
  • workflow.md: Workflow steps or data flow description
  • findings_report.md: Final summary of insights or model results
  • data_dictionary.md: Field-by-field variable descriptions

src/

Source code for analysis, processing, and utilities.

  • EDA/: Exploratory Data Analysis scripts
  • quality_assurance/: Validation and anomaly detection
  • transformations/: Feature engineering, normalization, etc.
  • utils/: Shared helper functions

notebooks/

Interactive analysis and modeling experiments.

tests/

All unit and integration tests for reproducibility and stability.

logs/

Log outputs for quality checks, ETL runs, or validation results.


⚙️ Setup Instructions

1. Install Dependencies

pip install -r requirements.txt

2. Configure Project

Duplicate the credentials template:

cp config/credentials_template.yaml config/credentials.yaml

Edit paths and variables inside config/config.yaml as needed.

3. Run Validation or EDA Scripts

Example:

python src/EDA/cleaning/clean_data.py
python src/quality_assurance/validate_data.py

4. (Optional) Use Make Commands

If you added a Makefile, you can automate setup:

make setup
make validate
make tests

🧪 Testing

Run all test scripts:

pytest tests/

📘 Documentation Tips

For project teams:

  • Keep docs/workflow.md up to date as the project evolves.
  • Add versioned datasets in data/validated for traceability.
  • Include visualization results or charts in docs/findings_report.md.

🛡️ License

This template is distributed under the MIT License.


🌟 Recommended Add-ons

  • Dockerfile for environment consistency
  • dataflow.md visual diagram (in docs/)
  • pipelines/ folder for future orchestration (Prefect / Airflow)
  • .env.example for environment variables

🧠 Credits

Designed for data professionals who value:

  • Clean structure
  • Reproducibility
  • Scalability
  • Clarity in documentation

Crafted with care for real-world data teams, educators, and freelancers building impactful analytical workflows.

About

A template for data analytics projects

Resources

License

Stars

Watchers

Forks