A fully structured, production-ready Data Analysis Project Starter designed for analysts, data scientists, and teams who want a scalable, organized, and reproducible foundation for data-driven projects.
This template enforces best practices in folder hierarchy, documentation, testing, and configuration — helping you focus on insights rather than setup.
Click “Use this template” on GitHub to create a new repository from this starter. You’ll get a clean copy with no commit history.
If you prefer a lightweight copy without git history:
npx degit yourusername/data-analysis-project-starter my-project
cd my-project(Replace yourusername with your GitHub handle and my-project with your project name.)
data-analysis-project-starter/
│
├── config/
│ ├── config.yaml
│ ├── credentials_template.yaml
│ └── README.md
│
├── data/
│ ├── raw/
│ ├── processed/
│ ├── validated/
│ ├── final/
│ └── README.md
│
├── docs/
│ ├── SOP.md
│ ├── workflow.md
│ ├── project_overview.md
│ ├── findings_report.md
│ └── data_dictionary.md
│
├── notebooks/
│ ├── exploration.ipynb
│ ├── modeling.ipynb
│ └── experiments.ipynb
│
├── references/
│ ├── articles/
│ ├── datasets/
│ └── README.md
│
├── src/
│ ├── EDA/
│ │ ├── cleaning/
│ │ │ ├── clean_data.py
│ │ │ └── handle_missing_values.py
│ │ └── exploration/
│ │ ├── visualize_distributions.py
│ │ └── correlations.py
│ │
│ ├── quality_assurance/
│ │ ├── validate_data.py
│ │ └── detect_anomalies.py
│ │
│ ├── transformations/
│ │ ├── feature_engineering.py
│ │ ├── normalization.py
│ │ └── outlier_treatment.py
│ │
│ └── utils/
│ ├── helpers.py
│ ├── io_utils.py
│ └── logger.py
│
├── tests/
│ ├── test_data_validation.py
│ ├── test_transformations.py
│ └── test_utils.py
│
├── logs/
│ ├── qa_logs/
│ └── processing_logs/
│
├── .gitignore
├── LICENSE
├── requirements.txt
├── Makefile (optional)
└── README.mdCentralized project settings.
config.yaml: Main configuration file (paths, parameters, etc.)credentials_template.yaml: Safe template for environment variables (no secrets)
Your data pipeline layers.
raw/: Unmodified source dataprocessed/: Cleaned and intermediate datasetsvalidated/: QA-checked data outputsfinal/: Ready-for-analysis or model-ready datasets
Project documentation and reporting.
SOP.md: Standard Operating Procedureworkflow.md: Workflow steps or data flow descriptionfindings_report.md: Final summary of insights or model resultsdata_dictionary.md: Field-by-field variable descriptions
Source code for analysis, processing, and utilities.
EDA/: Exploratory Data Analysis scriptsquality_assurance/: Validation and anomaly detectiontransformations/: Feature engineering, normalization, etc.utils/: Shared helper functions
Interactive analysis and modeling experiments.
All unit and integration tests for reproducibility and stability.
Log outputs for quality checks, ETL runs, or validation results.
pip install -r requirements.txtDuplicate the credentials template:
cp config/credentials_template.yaml config/credentials.yamlEdit paths and variables inside config/config.yaml as needed.
Example:
python src/EDA/cleaning/clean_data.py
python src/quality_assurance/validate_data.pyIf you added a Makefile, you can automate setup:
make setup
make validate
make testsRun all test scripts:
pytest tests/For project teams:
- Keep
docs/workflow.mdup to date as the project evolves. - Add versioned datasets in
data/validatedfor traceability. - Include visualization results or charts in
docs/findings_report.md.
This template is distributed under the MIT License.
- Dockerfile for environment consistency
- dataflow.md visual diagram (in
docs/) - pipelines/ folder for future orchestration (Prefect / Airflow)
- .env.example for environment variables
Designed for data professionals who value:
- Clean structure
- Reproducibility
- Scalability
- Clarity in documentation
Crafted with care for real-world data teams, educators, and freelancers building impactful analytical workflows.