Skip to content

cory-moore/careless_response_meta_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Careless Responding Meta-Analysis

This repository contains the complete analysis pipeline for a meta-analytic study examining careless responding prevalence and detection methods in psychological and organizational research. The repository is designed for full reproducibility of the dissertation analysis.

Repository Structure

careless_meta/
├── data/                       # Data files
│   ├── coded_study_data_all.xlsx # Main dataset for analysis
│   └── shared_studies_coded.xlsx # Reliability analysis dataset
├── python/                     # Python preprocessing scripts
│   ├── 00_preprocess.py        # Data cleaning and preparation
│   ├── 01_counts.py            # Generate descriptive counts
│   ├── 02_reliability.py       # Inter-rater reliability analysis
│   ├── 03_proportions.py       # Calculate careless proportions
│   ├── 04_meta_analysis.py     # Initial meta-analysis preparation
│   └── utils.py                # Utility functions
├── R/                          # R analysis scripts
│   ├── 00_eda.R                # Exploratory data analysis
│   ├── 01_data_import.R        # Import preprocessed data
│   ├── 02_meta_analysis.R      # Core meta-analysis
│   ├── 03_compare_metas.R      # Compare meta-analytic approaches
│   ├── 04_meta_regression.R    # Meta-regression models
│   ├── 05_multilevel_positions.R # Positional effects analysis
│   ├── 06_bias_sensitivity.R   # Publication bias and sensitivity analyses
│   ├── 07_results_summary.R    # Summarize results
│   ├── 08_visualization.R      # Create visualizations
│   └── run_all.R               # Execute all R scripts sequentially
├── output/                     # Analysis outputs
│   ├── data_examination/       # Data quality checks
│   ├── python_results/         # Results from Python preprocessing
│   ├── r_results/              # Results from R analyses
│   ├── figures/                # Generated figures
│   └── tables/                 # Generated tables
├── docs/                       # Documentation
├── codebook.json               # Codebook for variables and coding schemes
└── README.md                   # This file

Required Data Files

The analysis requires two core data files in the data/ directory:

  1. coded_study_data_all.xlsx: Main dataset containing:

    • Study characteristics
    • Sample information
    • Careless responding detection methods
    • Prevalence rates
    • Methodological details
  2. shared_studies_coded.xlsx: Reliability analysis dataset containing:

    • Shared studies coded by multiple raters
    • Inter-rater reliability data

These files are processed by the Python preprocessing pipeline to generate the analysis-ready datasets.

Key Analytical Decisions

The analysis employs three complementary approaches to address different research questions:

  1. First-Method Approach (Primary Analysis)

    • Combines single-method studies with first methods from sequential screening
    • Maximizes sample size while controlling for method ordering effects
    • Primary focus for prevalence estimates and method comparisons
  2. Single-Method Approach (Secondary Analysis)

    • Restricted to studies using only one detection method
    • Provides method-specific estimates with maximum internal validity
    • Used for sensitivity analysis of method effects
  3. Overall Approach (Tertiary Analysis)

    • Examines total careless responding rates across all methods
    • Provides general prevalence estimates
    • Used for temporal trend analysis

Reproducing the Analysis

Execution Steps

  1. Run Python preprocessing pipeline:

    python python/00_preprocess.py
    python python/01_counts.py
    python python/02_reliability.py
    python python/03_proportions.py
    python python/04_meta_analysis.py
  2. Run R analysis pipeline:

    Rscript R/run_all.R

All outputs will be generated in the output/ directory, organized by analysis type.

Key Outputs

  • Meta-analytic Results: Pooled estimates, heterogeneity statistics, and subgroup analyses
  • Method Comparisons: Forest plots comparing different detection methods
  • Temporal Analysis: Trends in careless responding rates over time
  • Publication Bias: Funnel plots and sensitivity analyses
  • Influence Analysis: Cook's distance plots and leave-one-out analyses

Documentation

  • codebook.json: Complete variable definitions and coding schemes
  • docs/: Additional documentation on methodological decisions
  • Script headers: Detailed comments explaining each analysis step

License

This repository is publicly available for research transparency and reproducibility purposes. Please cite the associated dissertation when using this code or analysis.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published