Skip to content

30 simple efficient module growth from pairtriple data#35

Open
realmarcin wants to merge 2 commits intomainfrom
30-simple-efficient-module-growth-from-pairtriple-data
Open

30 simple efficient module growth from pairtriple data#35
realmarcin wants to merge 2 commits intomainfrom
30-simple-efficient-module-growth-from-pairtriple-data

Conversation

@realmarcin
Copy link
Collaborator

No description provided.

realmarcin and others added 2 commits September 17, 2025 23:48
- Implement PairsDataLoader.build_iterative_module_internal() with alternating gene/condition expansion
- Add PairsDataLoader.build_multiple_modules() for discovery attempts
- Add build_iterative_module() and discover_functional_modules() MCP tools
- Include comprehensive runaway growth prevention and failure analysis
- Add enhanced type annotations (Set, Tuple, random import)
- Register new functions with FastMCP for external access

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
- Implement PairsDataLoader.categorize_module() for fitness-based module analysis
- Add statistical categorization: Growth Enhancing/Inhibiting/Neutral categories
- Include variability analysis (High/Moderate/Low) and condition diversity assessment
- Add PairsDataLoader.generate_module_summary() for cross-module analysis
- Integrate categorization into build_iterative_module_internal() results
- Enhance discover_functional_modules() with categorization_analysis section
- Add numpy support with fallback calculations for statistical analysis
- Include Counter type annotations for mypy compliance

Features:
- Primary category classification based on mean fitness values
- Variability assessment using standard deviation thresholds
- Condition diversity evaluation (Broad/Moderate/Narrow response)
- Top conditions ranking by average absolute fitness
- Summary descriptions and interpretation text
- Cross-module statistical summaries with category distribution

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
@realmarcin realmarcin linked an issue Sep 18, 2025 that may be closed by this pull request
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

simple efficient module growth from pair/triple data

1 participant