Restoring mobility through brain-computer interface technology
Overview • Features • Architecture • Get Started • Usage • Regulatory • Contribute • Roadmap
Getting Started |
|
|
|
|
|
|
Chimera follows a modular architecture designed for flexibility, maintainability, and regulatory compliance:
```
chimera_v2.0/
├── 📂 .github/ # GitHub Actions & CI/CD workflows
│ ├── 📂 workflows/ # Automated workflow definitions
│ │ ├── 📄 codeql.yml # Code quality analysis
│ │ ├── 📄 ci.yml # Continuous integration pipeline
│ │ └── 📄 security-scan.yml # Security vulnerability scanning
│ ├── 📄 ISSUE_TEMPLATE.md # Issue reporting templates
│ └── 📄 PULL_REQUEST_TEMPLATE.md # Pull request guidelines
│
├── 📂 architecture/ # System architecture documentation
│ ├── 📂 diagrams/ # Architecture diagrams and flowcharts
│ ├── 📂 specifications/ # Technical specifications
│ ├── 📄 api_design_guide.md # API design principles and standards
│ ├── 📄 system_overview.md # High-level system architecture
│ └── 📄 integration_patterns.md # Integration and communication patterns
│
├── 📂 benchmarks/ # Performance benchmarking suite
│ ├── 📂 datasets/ # Benchmark datasets
│ ├── 📂 results/ # Benchmark results and comparisons
│ ├── 📂 scripts/ # Benchmarking automation scripts
│ └── 📄 performance_metrics.md # Performance evaluation criteria
│
├── 📂 clinical/ # Clinical validation and trials
│ ├── 📂 advisory_board/ # Advisory board documentation
│ │ ├── 📄 charter.md # Board charter and responsibilities
│ │ ├── 📄 meeting_minutes/ # Board meeting records
│ │ └── 📄 recommendations.md # Clinical recommendations
│ ├── 📂 data_collection/ # Clinical data collection protocols
│ │ ├── 📂 protocols/ # Data collection procedures
│ │ ├── 📂 forms/ # Clinical assessment forms
│ │ └── 📂 guidelines/ # Data collection guidelines
│ ├── 📂 ethics/ # Ethics and IRB documentation
│ │ ├── 📄 irb_approval.pdf # Institutional Review Board approval
│ │ ├── 📄 consent_forms.pdf # Patient consent documentation
│ │ └── 📄 ethics_framework.md # Research ethics guidelines
│ ├── 📂 protocols/ # Clinical trial protocols
│ │ ├── 📄 study_design.md # Clinical study design
│ │ ├── 📄 inclusion_criteria.md # Patient inclusion/exclusion criteria
│ │ └── 📄 outcome_measures.md # Primary and secondary outcomes
│ ├── 📂 validation/ # Clinical validation studies
│ │ ├── 📂 pilot_studies/ # Pilot study results
│ │ ├── 📂 efficacy_trials/ # Efficacy validation trials
│ │ └── 📂 safety_studies/ # Safety assessment studies
│ └── 📄 clinical_overview.md # Clinical program overview
│
├── 📂 config/ # Configuration management
│ ├── 📂 experiments/ # Experiment configurations
│ │ ├── 📄 experiment_01.yaml # Motor imagery experiment config
│ │ ├── 📄 experiment_02.yaml # Cross-subject validation config
│ │ └── 📄 baseline_config.yaml # Baseline experiment parameters
│ ├── 📂 models/ # Model configuration files
│ │ ├── 📄 eegnet_config.yaml # EEGNet model parameters
│ │ ├── 📄 lda_config.yaml # Linear Discriminant Analysis config
│ │ └── 📄 svm_config.yaml # Support Vector Machine config
│ ├── 📂 deployment/ # Deployment configurations
│ │ ├── 📄 production.yaml # Production environment config
│ │ ├── 📄 staging.yaml # Staging environment config
│ │ └── 📄 development.yaml # Development environment config
│ └── 📄 default_config.yaml # Default system configuration
│
├── 📂 data/ # Data management and governance
│ ├── 📂 01_raw/ # Raw EEG data (DVC tracked)
│ │ ├── 📂 subject-001/ # Individual subject data
│ │ │ ├── 📂 session_01/ # Recording session data
│ │ │ │ ├── 📄 eeg_data.fif # Raw EEG recordings
│ │ │ │ ├── 📄 events.txt # Event markers
│ │ │ │ └── 📄 metadata.json # Session metadata
│ │ │ └── 📂 session_02/ # Additional sessions
│ │ ├── 📂 subject-002/ # Additional subjects
│ │ └── 📂 calibration/ # System calibration data
│ ├── 📂 02_processed/ # Preprocessed data
│ │ ├── 📂 filtered/ # Filtered EEG signals
│ │ ├── 📂 artifacts_removed/ # Artifact-cleaned data
│ │ └── 📂 epoched/ # Epoched trial data
│ ├── 📂 03_features/ # Extracted features
│ │ ├── 📂 csp_features/ # Common Spatial Pattern features
│ │ ├── 📂 psd_features/ # Power Spectral Density features
│ │ └── 📂 time_domain/ # Time domain features
│ ├── 📂 04_datasets/ # ML-ready datasets
│ │ ├── 📂 training/ # Training datasets
│ │ ├── 📂 validation/ # Validation datasets
│ │ └── 📂 testing/ # Test datasets
│ ├── 📂 governance/ # Data governance documentation
│ │ ├── 📄 data_dictionary.md # Data field definitions
│ │ ├── 📄 privacy_policy.md # Data privacy guidelines
│ │ └── 📄 retention_policy.md # Data retention policies
│ └── 📄 data_quality_metrics.md # Data quality assessment
│
├── 📂 deployment/ # Deployment infrastructure
│ ├── 📂 embedded/ # Embedded system deployment
│ │ ├── 📄 ci_cd_pipeline.yml # Embedded CI/CD pipeline
│ │ ├── 📄 verification.md # Deployment verification
│ │ └── 📂 firmware/ # Firmware deployment scripts
│ ├── 📂 hardware_integration/ # Hardware integration scripts
│ │ ├── 📂 exoskeleton/ # Exoskeleton integration
│ │ ├── 📂 eeg_devices/ # EEG device interfaces
│ │ └── 📂 communication/ # Device communication protocols
│ ├── 📂 ota_updates/ # Over-the-air update system
│ │ ├── 📂 update_packages/ # Update package management
│ │ ├── 📂 rollback/ # Rollback mechanisms
│ │ └── 📄 update_protocol.md # Update deployment protocol
│ ├── 📂 cloud/ # Cloud deployment configurations
│ │ ├── 📄 docker-compose.yml # Docker containerization
│ │ ├── 📄 kubernetes.yaml # Kubernetes deployment
│ │ └── 📂 terraform/ # Infrastructure as code
│ └── 📄 deployment_guide.md # Deployment documentation
│
├── 📂 docs/ # Comprehensive documentation
│ ├── 📂 _static/ # Static documentation assets
│ │ ├── 📂 images/ # Documentation images
│ │ ├── 📂 css/ # Custom styling
│ │ └── 📂 js/ # Interactive elements
│ ├── 📂 api/ # API documentation
│ │ ├── 📄 endpoints.md # API endpoint reference
│ │ ├── 📄 authentication.md # Authentication methods
│ │ └── 📄 examples.md # API usage examples
│ ├── 📂 developer_guides/ # Developer documentation
│ │ ├── 📄 getting_started.md # Quick start guide
│ │ ├── 📄 contributing.md # Contribution guidelines
│ │ ├── 📄 coding_standards.md # Code style guidelines
│ │ └── 📄 testing_guide.md # Testing best practices
│ ├── 📂 troubleshooting/ # Troubleshooting guides
│ │ ├── 📄 common_issues.md # Frequently encountered issues
│ │ ├── 📄 debugging_guide.md # Debugging procedures
│ │ └── 📄 error_codes.md # Error code reference
│ ├── 📂 user_guides/ # End-user documentation
│ │ ├── 📄 installation.md # Installation instructions
│ │ ├── 📄 configuration.md # Configuration guide
│ │ └── 📄 operation_manual.md # Operation procedures
│ ├── 📄 architecture.md # System architecture overview
│ ├── 📄 data.md # Data handling documentation
│ ├── 📄 deployment.md # Deployment procedures
│ ├── 📄 index.md # Documentation index
│ ├── 📄 models.md # Model documentation
│ └── 📄 usage_guide.md # Usage instructions
│
├── 📂 models/ # ML models and artifacts
│ ├── 📂 classifiers/ # Trained classification models
│ │ ├── 📄 eeg_cnn_v1_final.h5 # CNN model for EEG classification
│ │ ├── 📄 lda_subject001_session02.pkl # Subject-specific LDA model
│ │ ├── 📄 svm_motor_imagery.pkl # SVM for motor imagery
│ │ └── 📄 ensemble_model.pkl # Ensemble classification model
│ ├── 📂 documentation/ # Model documentation
│ │ ├── 📂 model_cards/ # Model performance cards
│ │ │ ├── 📄 eeg_cnn_v1.md # CNN model card
│ │ │ ├── 📄 lda_baseline.md # LDA baseline model card
│ │ │ └── 📄 ensemble_v2.md # Ensemble model documentation
│ │ ├── 📂 performance_reports/ # Model performance analysis
│ │ │ ├── 📄 cross_validation.md # Cross-validation results
│ │ │ ├── 📄 subject_transfer.md # Transfer learning analysis
│ │ │ └── 📄 real_time_performance.md # Real-time inference metrics
│ │ └── 📄 limitations.md # Model limitations and constraints
│ ├── 📂 signal_processing/ # Signal processing models
│ │ ├── 📄 ica_subject001_weights.fif # ICA artifact removal weights
│ │ ├── 📄 csp_filters.pkl # Common Spatial Pattern filters
│ │ └── 📄 bandpass_coefficients.pkl # Digital filter coefficients
│ ├── 📂 checkpoints/ # Training checkpoints
│ │ ├── 📂 eegnet/ # EEGNet training checkpoints
│ │ ├── 📂 lstm/ # LSTM model checkpoints
│ │ └── 📂 transformer/ # Transformer model checkpoints
│ └── 📄 model_registry.json # Model version registry
│
├── 📂 notebooks/ # Jupyter notebooks for analysis
│ ├── 📂 exploratory/ # Exploratory data analysis
│ │ ├── 📄 data_exploration.ipynb # Initial data exploration
│ │ ├── 📄 signal_visualization.ipynb # EEG signal visualization
│ │ └── 📄 feature_analysis.ipynb # Feature importance analysis
│ ├── 📂 experiments/ # Experimental notebooks
│ │ ├── 📄 baseline_models.ipynb # Baseline model experiments
│ │ ├── 📄 hyperparameter_tuning.ipynb # Model optimization
│ │ └── 📄 cross_subject_validation.ipynb # Cross-subject studies
│ ├── 📂 tutorials/ # Educational notebooks
│ │ ├── 📄 eeg_preprocessing.ipynb # EEG preprocessing tutorial
│ │ ├── 📄 feature_extraction.ipynb # Feature extraction guide
│ │ └── 📄 model_training.ipynb # Model training tutorial
│ └── 📄 template.ipynb # Notebook template
│
├── 📂 quality/ # Quality assurance framework
│ ├── 📂 testing/ # Testing infrastructure
│ │ ├── 📂 unit_tests/ # Unit test suites
│ │ ├── 📂 integration_tests/ # Integration testing
│ │ ├── 📂 performance_tests/ # Performance benchmarks
│ │ └── 📂 regression_tests/ # Regression test suites
│ ├── 📂 code_review/ # Code review guidelines
│ │ ├── 📄 review_checklist.md # Code review checklist
│ │ ├── 📄 style_guide.md # Code style guidelines
│ │ └── 📄 best_practices.md # Development best practices
│ ├── 📂 metrics/ # Quality metrics tracking
│ │ ├── 📄 code_coverage.md # Test coverage reports
│ │ ├── 📄 complexity_metrics.md # Code complexity analysis
│ │ └── 📄 technical_debt.md # Technical debt tracking
│ └── 📄 quality_standards.md # Quality assurance standards
│
├── 📂 regulatory/ # Regulatory compliance documentation
│ ├── 📂 fda/ # FDA compliance materials
│ │ ├── 📄 510k_submission.md # 510(k) premarket submission
│ │ ├── 📄 samd_classification.md # Software as Medical Device classification
│ │ ├── 📄 clinical_evaluation.md # Clinical evaluation report
│ │ └── 📄 predicate_analysis.md # Predicate device analysis
│ ├── 📂 iso_standards/ # ISO standard compliance
│ │ ├── 📄 iso_14971_risk_management.md # Risk management standard
│ │ ├── 📄 iso_13485_qms.md # Quality management system
│ │ ├── 📄 iso_62304_software.md # Medical device software standard
│ │ └── 📄 iso_27001_security.md # Information security standard
│ ├── 📂 international/ # International regulatory compliance
│ │ ├── 📄 ce_marking.md # European CE marking
│ │ ├── 📄 health_canada.md # Health Canada requirements
│ │ └── 📄 cdsco_india.md # Indian regulatory compliance
│ ├── 📄 risk_controls.md # Risk control measures
│ ├── 📄 validation_protocols.md # Validation and verification protocols
│ └── 📄 regulatory_strategy.md # Overall regulatory strategy
│
├── 📂 research/ # Research collaboration and publications
│ ├── 📂 publications/ # Research publications
│ │ ├── 📂 papers/ # Published research papers
│ │ ├── 📂 conferences/ # Conference presentations
│ │ ├── 📂 patents/ # Patent applications
│ │ └── 📂 preprints/ # Preprint manuscripts
│ ├── 📂 collaborations/ # Research collaborations
│ │ ├── 📂 academic_partners/ # University partnerships
│ │ ├── 📂 industry_partners/ # Industry collaborations
│ │ └── 📂 clinical_sites/ # Clinical research sites
│ ├── 📂 datasets/ # Research datasets
│ │ ├── 📂 public_datasets/ # Publicly available datasets
│ │ ├── 📂 synthetic_data/ # Synthetic data generation
│ │ └── 📂 benchmark_datasets/ # Standardized benchmarks
│ ├── 📄 research_roadmap.md # Research development roadmap
│ └── 📄 ethics_framework.md # Research ethics guidelines
│
├── 📂 scripts/ # Automation and utility scripts
│ ├── 📂 data_processing/ # Data processing automation
│ │ ├── 📄 preprocess_eeg.py # EEG preprocessing pipeline
│ │ ├── 📄 extract_features.py # Feature extraction script
│ │ └── 📄 create_datasets.py # Dataset creation automation
│ ├── 📂 training/ # Model training scripts
│ │ ├── 📄 train_eegnet.py # EEGNet training script
│ │ ├── 📄 train_lda.py # LDA training script
│ │ ├── 📄 hyperparameter_search.py # Automated hyperparameter tuning
│ │ └── 📄 tune_hyperparameters.py # Hyperparameter optimization
│ ├── 📂 evaluation/ # Model evaluation scripts
│ │ ├── 📄 evaluate_models.py # Model performance evaluation
│ │ ├── 📄 cross_validation.py # Cross-validation analysis
│ │ └── 📄 statistical_tests.py # Statistical significance testing
│ ├── 📂 deployment/ # Deployment automation
│ │ ├── 📄 deploy_model.py # Model deployment script
│ │ ├── 📄 health_check.py # System health monitoring
│ │ └── 📄 backup_restore.py # Data backup and restore
│ └── 📂 utilities/ # General utility scripts
│ ├── 📄 data_validation.py # Data integrity validation
│ ├── 📄 system_diagnostics.py # System diagnostic tools
│ └── 📄 performance_monitor.py # Performance monitoring
│
├── 📂 security/ # Security framework and policies
│ ├── 📂 policies/ # Security policies
│ │ ├── 📄 access_control.md # Access control policies
│ │ ├── 📄 data_protection.md # Data protection guidelines
│ │ ├── 📄 incident_response.md # Security incident response
│ │ └── 📄 vulnerability_management.md # Vulnerability management
│ ├── 📂 threat_modeling/ # Security threat analysis
│ │ ├── 📄 threat_assessment.md # Threat landscape analysis
│ │ ├── 📄 attack_vectors.md # Potential attack vectors
│ │ └── 📄 mitigation_strategies.md # Security mitigation measures
│ ├── 📂 compliance/ # Security compliance
│ │ ├── 📄 hipaa_compliance.md # HIPAA privacy compliance
│ │ ├── 📄 gdpr_compliance.md # GDPR data protection
│ │ └── 📄 cybersecurity_framework.md # Cybersecurity standards
│ ├── 📄 security_policy.md # Overall security policy
│ └── 📄 security_architecture.md # Security architecture design
│
├── 📂 src/ # Core source code
│ └── 📂 chimera/ # Main Python package
│ ├── 📂 data/ # Data handling and loading
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 loaders.py # Data loading utilities
│ │ ├── 📄 validators.py # Data validation functions
│ │ └── 📄 transforms.py # Data transformation utilities
│ ├── 📂 processing/ # Signal processing modules
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 filters.py # Digital filtering functions
│ │ ├── 📄 artifacts.py # Artifact removal algorithms
│ │ ├── 📄 preprocessing.py # EEG preprocessing pipeline
│ │ └── 📄 quality_control.py # Signal quality assessment
│ ├── 📂 features/ # Feature extraction modules
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 spatial.py # Spatial feature extraction (CSP)
│ │ ├── 📄 spectral.py # Spectral feature extraction (PSD)
│ │ ├── 📄 temporal.py # Temporal feature extraction
│ │ └── 📄 connectivity.py # Connectivity feature extraction
│ ├── 📂 models/ # ML model implementations
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 base.py # Base model classes
│ │ ├── 📄 classical.py # Classical ML models (LDA, SVM)
│ │ ├── 📄 deep_learning.py # Deep learning models
│ │ ├── 📄 ensemble.py # Ensemble methods
│ │ └── 📄 transfer_learning.py # Transfer learning utilities
│ ├── 📂 training/ # Model training infrastructure
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 trainers.py # Training loop implementations
│ │ ├── 📄 optimizers.py # Optimization algorithms
│ │ ├── 📄 schedulers.py # Learning rate schedulers
│ │ └── 📄 callbacks.py # Training callbacks
│ ├── 📂 evaluation/ # Model evaluation modules
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 metrics.py # Evaluation metrics
│ │ ├── 📄 cross_validation.py # Cross-validation utilities
│ │ ├── 📄 statistical_tests.py # Statistical testing
│ │ └── 📄 visualization.py # Results visualization
│ ├── 📂 inference/ # Real-time inference engine
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 predictor.py # Real-time prediction engine
│ │ ├── 📄 streaming.py # Streaming data processing
│ │ ├── 📄 monitoring.py # Model performance monitoring
│ │ └── 📄 safety_checks.py # Safety validation checks
│ ├── 📂 hardware/ # Hardware interface modules
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 eeg_interface.py # EEG device communication
│ │ ├── 📄 exoskeleton_control.py # Exoskeleton control interface
│ │ ├── 📄 communication.py # Device communication protocols
│ │ └── 📄 hardware_interface.py # Generic hardware interface
│ ├── 📂 deployment/ # Deployment utilities
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 model_server.py # Model serving infrastructure
│ │ ├── 📄 containerization.py # Docker containerization
│ │ ├── 📄 monitoring.py # Deployment monitoring
│ │ └── 📄 health_checks.py # System health validation
│ ├── 📂 utils/ # Shared utility functions
│ │ ├── 📄 __init__.py # Package initialization
│ │ ├── 📄 logging.py # Logging configuration
│ │ ├── 📄 config.py # Configuration management
│ │ ├── 📄 io_utils.py # Input/output utilities
│ │ ├── 📄 math_utils.py # Mathematical utilities
│ │ └── 📄 visualization.py # Visualization utilities
│ └── 📄 __init__.py # Main package initialization
│
├── 📂 tests/ # Comprehensive test suite
│ ├── 📂 unit/ # Unit tests
│ │ ├── 📂 data/ # Data module tests
│ │ ├── 📂 processing/ # Processing module tests
│ │ ├── 📂 features/ # Feature extraction tests
│ │ ├── 📂 models/ # Model implementation tests
│ │ └── 📂 utils/ # Utility function tests
│ ├── 📂 integration/ # Integration tests
│ │ ├── 📂 pipeline/ # End-to-end pipeline tests
│ │ ├── 📂 hardware/ # Hardware integration tests
│ │ └── 📂 deployment/ # Deployment integration tests
│ ├── 📂 performance/ # Performance tests
│ │ ├── 📂 benchmarks/ # Performance benchmarks
│ │ ├── 📂 stress_tests/ # System stress testing
│ │ └── 📂 load_tests/ # Load testing scenarios
│ ├── 📂 fixtures/ # Test data and fixtures
│ │ ├── 📂 sample_data/ # Sample EEG data for testing
│ │ ├── 📂 mock_models/ # Mock model implementations
│ │ └── 📂 test_configs/ # Test configuration files
│ ├── 📄 conftest.py # Pytest configuration
│ └── 📄 test_requirements.txt # Testing dependencies
│
├── 📄 .gitignore # Git ignore patterns
├── 📄 .pre-commit-config.yaml # Pre-commit hooks configuration
├── 📄 .dvcignore # DVC ignore patterns
├── 📄 pyproject.toml # Python project configuration
├── 📄 poetry.lock # Poetry dependency lock file
├── 📄 requirements.txt # Python dependencies
├── 📄 environment.yml # Conda environment specification
├── 📄 Dockerfile # Docker containerization
├── 📄 docker-compose.yml # Multi-container Docker setup
├── 📄 Makefile # Build automation
├── 📄 dvc.yaml # DVC pipeline configuration
├── 📄 params.yaml # DVC parameters
├── 📄 README.md # Project documentation
├── 📄 LICENSE # Apache 2.0 license
├── 📄 CHANGELOG.md # Version change history
├── 📄 CONTRIBUTING.md # Contribution guidelines
├── 📄 CODE_OF_CONDUCT.md # Community code of conduct
└── 📄 SECURITY.md # Security policy and reporting
```
|
The repository follows a modular, enterprise-grade architecture designed for:
- 🔬 Research & Development: Comprehensive notebooks and experimental frameworks
- 🏥 Clinical Validation: Robust clinical trial infrastructure and regulatory compliance
- 🚀 Production Deployment: Scalable deployment pipelines and monitoring systems
- 🔒 Security & Compliance: Enterprise-level security and regulatory frameworks
- 📊 Quality Assurance: Comprehensive testing and quality management systems
| Directory | Purpose | Key Features |
|---|---|---|
src/chimera/ |
Core ML platform | Modular BCI pipeline, real-time inference |
clinical/ |
Clinical validation | IRB protocols, advisory board, ethics framework |
regulatory/ |
Compliance framework | FDA 510(k), ISO standards, international regulations |
data/ |
Data management | DVC-tracked datasets, governance, quality metrics |
models/ |
ML artifacts | Trained models, documentation, performance reports |
deployment/ |
Production systems | Hardware integration, OTA updates, monitoring |
security/ |
Security framework | Threat modeling, compliance, incident response |
quality/ |
QA infrastructure | Testing suites, code review, metrics tracking |
This structure ensures scalability, maintainability, and regulatory compliance while supporting both research innovation and production deployment.
|
Installation & Setup
# Clone the repository
git clone https://github.com/chimera-org/chimera_v2.0.git
cd chimera_v2.0
# Install dependencies
poetry install
# Set up pre-commit hooks
poetry run pre-commit install
# Download example datasets
poetry run dvc pullfrom chimera.data import EEGDataLoader
from chimera.processing import Preprocessor
# Load EEG data
loader = EEGDataLoader(dataset_path="data/example_dataset")
raw_data = loader.load()
# Preprocess the data
preprocessor = Preprocessor(
filters=["bandpass", "notch"],
filter_params={"bandpass": {"l_freq": 1, "h_freq": 40}}
)
processed_data = preprocessor.process(raw_data)from chimera.features import FeatureExtractor
from chimera.models import EEGNet
from chimera.training import Trainer
# Extract features
extractor = FeatureExtractor(method="csp")
features = extractor.extract(processed_data)
# Create and train model
model = EEGNet(
num_channels=64,
num_classes=4,
dropout_rate=0.5
)
trainer = Trainer(
model=model,
optimizer="adam",
learning_rate=0.001,
batch_size=64,
num_epochs=100
)
trainer.train(features)from chimera.evaluation import Evaluator
# Evaluate model performance
evaluator = Evaluator(metrics=["accuracy", "f1", "confusion_matrix"])
results = evaluator.evaluate(model, test_data)
print(f"Accuracy: {results['accuracy']:.4f}")from chimera.deployment import ModelDeployer
# Package model for deployment
deployer = ModelDeployer(
model=model,
target="embedded",
optimization="quantization"
)
deployment_package = deployer.package()
deployer.deploy(deployment_package, target_device="exoskeleton_v1")|
Chimera is designed to meet FDA requirements for Software as a Medical Device (SaMD) with AI/ML components:
|
For the Indian market, Chimera complies with Central Drugs Standard Control Organization requirements:
|
Risk Management
Comprehensive risk management following ISO 14971:
- Risk Analysis: Systematic identification of hazards
- Risk Evaluation: Assessment of severity and probability
- Risk Controls: Implementation of mitigations
- Residual Risk: Evaluation of acceptability
- Post-Market Surveillance: Continuous monitoring plan
|
|
We welcome contributions from the community! Please read our contribution guidelines before submitting pull requests. This project adheres to a Code of Conduct to ensure a welcoming and inclusive environment for all contributors. Please see our Contributing Guide for details on:
|
|
| Timeline | Milestone | Description |
|---|---|---|
| Q2 202X | Enhanced Transfer Learning | Improved cross-subject and cross-session adaptation capabilities |
| Q3 202X | Real-time Adaptive Algorithms | Algorithms that adapt to changing brain signals during use |
| Q4 202X | Multi-modal Integration | Combined EEG + EMG signal processing for improved control |
| Q1 202X | Expanded Hardware Support | Support for additional EEG devices and exoskeleton platforms |
| Q2 202X | Advanced Personalization | Framework for personalized model adaptation |
| Q3 202X | Federated Learning | Privacy-preserving distributed learning implementation |
| Q4 202X | Regulatory Submission | Complete package for FDA and CDSCO submissions |
See our project board for detailed development plans.
Authors: (Authors name, Year)
Journal: (Journal's name, volume number-issue number, page range/article identification number)
Abstract: (One line abstract)
|
This project is licensed under the Apache License 2.0 - see the LICENSE file for details. Copyright (c) 2025 Chimera BCI Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. |
|
|
EEG processing tools |
Benchmark datasets |
Configuration framework |
All contributors |
|
Project Lead: Ankit Gupta, Manthan Shinde Technical Support: |



