Skip to content

A new package that analyzes user-provided text to detect and categorize the overall emotional tone or "vibe" of the content. It processes input text and returns a structured summary of the detected em

Notifications You must be signed in to change notification settings

chigwell/vibe-analyzer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

vibe-analyzer

PyPI version License: MIT Downloads LinkedIn

vibe-analyzer is a Python package designed to analyze user-provided text to detect and categorize the overall emotional tone or "vibe" of the content. It processes input text and returns a structured summary of the detected emotions, such as positivity, negativity, excitement, or calmness, using pattern matching to ensure consistent and reliable output formatting. This tool is useful for sentiment tracking in user feedback, social media monitoring, or enhancing chatbot interactions by adapting responses based on emotional context.

Installation

Install vibe-analyzer via pip:

pip install vibe_analyzer

Usage

Here's a basic example of how to use vibe_analyzer:

from vibe_analyzer import vibe_analyzer

# Sample user input
user_input = "I'm feeling great today!"

# Analyze the vibe
result = vibe_analyzer(user_input)

print(result)

Function Parameters

  • user_input: str
    The text input from the user to analyze for emotional tone.

  • llm: Optional[BaseChatModel]
    An instance of a language model to use for analysis. If not provided, the default ChatLLM7 from langchain_llm7 will be used.

  • api_key: Optional[str]
    Your API key for llm7. If not provided, it will be read from the environment variable LLM7_API_KEY.

Underlying Technology

The package uses the ChatLLM7 class from the langchain_llm7 library by default. Developers can easily pass their own language model instances compatible with the interface, such as:

from langchain_openai import ChatOpenAI
from vibe_analyzer import vibe_analyzer

llm = ChatOpenAI()
response = vibe_analyzer(user_input, llm=llm)

Similarly, other models like Anthropic or Google Generative AI can be used:

from langchain_anthropic import ChatAnthropic
from vibe_analyzer import vibe_analyzer

llm = ChatAnthropic()
response = vibe_analyzer(user_input, llm=llm)
from langchain_google_genai import ChatGoogleGenerativeAI
from vibe_analyzer import vibe_analyzer

llm = ChatGoogleGenerativeAI()
response = vibe_analyzer(user_input, llm=llm)

Rate Limits and API Keys

The default rate limits for LLM7's free tier are sufficient for most use cases. For higher rate limits, you can:

  • Set your API key via the environment variable LLM7_API_KEY, or
  • Pass it directly in function call: vibe_analyzer(user_input, api_key="your_api_key")

You can obtain a free API key by registering at https://token.llm7.io/.

Support

If you encounter issues or have questions, please open an issue on the GitHub repository:
https://github.com/chigwell/vibe-analyzer

Author

Eugene Evstafev
Email: [email protected]
GitHub: chigwell