django-idea-analyzer is a tiny helper library that leverages LLM7 (or any LangChain‑compatible LLM) to evaluate textual descriptions of Django web‑application ideas.
It returns a structured list of feedback items covering:
- Feasibility of the proposed feature
- Typical implementation challenges
- Recommended best practices for a Django‑centric solution
The package lets you get a quick sanity‑check on a Django concept before you start writing code.
pip install django_idea_analyzerfrom django_idea_analyzer import django_idea_analyzer
# A short description of the idea you want to evaluate
idea = """
I want a blogging platform where users can write posts,
add tags, and have a realtime comment section powered by websockets.
"""
# Use the default LLM7 backend (API key taken from LLM7_API_KEY env var)
feedback = django_idea_analyzer(user_input=idea)
print(feedback)Typical output (list of strings):
[
"The core blog model is straightforward in Django and can be built with the standard ORM.",
"Using Django Channels for realtime comments is feasible, but you need to configure a channel layer (e.g., Redis).",
"Tagging can be implemented with a ManyToMany field or a dedicated package like django‑tag‑git.",
"Consider adding pagination and caching for performance on large comment streams.",
"Make sure to handle authentication and permissions for comment creation."
]
django_idea_analyzer(
user_input: str,
llm: Optional[BaseChatModel] = None,
api_key: Optional[str] = None
) -> List[str]| Parameter | Type | Description |
|---|---|---|
| user_input | str |
The textual description of the Django feature or project idea you want to analyze. |
| llm | Optional[BaseChatModel] |
A LangChain LLM instance. If omitted, the function creates a ChatLLM7 instance automatically. |
| api_key | Optional[str] |
API key for LLM7. If not supplied, the function reads LLM7_API_KEY from the environment. |
The function returns a list of feedback strings extracted from the LLM response.
You can plug any LangChain‑compatible chat model instead of the default LLM7. This is handy if you prefer OpenAI, Anthropic, Google Gemini, or a self‑hosted model.
from langchain_openai import ChatOpenAI
from django_idea_analyzer import django_idea_analyzer
my_llm = ChatOpenAI(model="gpt-4o-mini")
response = django_idea_analyzer(user_input=idea, llm=my_llm)from langchain_anthropic import ChatAnthropic
from django_idea_analyzer import django_idea_analyzer
my_llm = ChatAnthropic(model="claude-3-haiku-20240307")
response = django_idea_analyzer(user_input=idea, llm=my_llm)from langchain_google_genai import ChatGoogleGenerativeAI
from django_idea_analyzer import django_idea_analyzer
my_llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
response = django_idea_analyzer(user_input=idea, llm=my_llm)- Package:
langchain_llm7–pip install langchain-llm7 - Default model: The free tier of LLM7 provides generous limits suitable for most development and testing scenarios.
- Obtaining an API key: Register at https://token.llm7.io/ to receive a free key.
- Overriding the key: Pass it directly via the
api_keyargument or set the environment variableLLM7_API_KEY.
export LLM7_API_KEY="your-llm7-api-key"- Issue tracker: https://github.com/chigwell/django_idea_analyzer/issues
- Author: Eugene Evstafev
- Email: [email protected]
- GitHub: https://github.com/chigwell
Feel free to open issues, submit pull requests, or ask questions. Happy coding!
This project is licensed under the MIT License. See the LICENSE file for details.