Skip to content

django-idea-analyzer provides structured feedback on Django project ideas, assessing feasibility, challenges, and best practices for efficient development evaluation.

Notifications You must be signed in to change notification settings

chigwell/django-idea-analyzer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

django-idea-analyzer

PyPI version License: MIT Downloads LinkedIn

django-idea-analyzer is a tiny helper library that leverages LLM7 (or any LangChain‑compatible LLM) to evaluate textual descriptions of Django web‑application ideas.
It returns a structured list of feedback items covering:

  • Feasibility of the proposed feature
  • Typical implementation challenges
  • Recommended best practices for a Django‑centric solution

The package lets you get a quick sanity‑check on a Django concept before you start writing code.


Installation

pip install django_idea_analyzer

Quick start

from django_idea_analyzer import django_idea_analyzer

# A short description of the idea you want to evaluate
idea = """
I want a blogging platform where users can write posts,
add tags, and have a realtime comment section powered by websockets.
"""

# Use the default LLM7 backend (API key taken from LLM7_API_KEY env var)
feedback = django_idea_analyzer(user_input=idea)

print(feedback)

Typical output (list of strings):

[
  "The core blog model is straightforward in Django and can be built with the standard ORM.",
  "Using Django Channels for realtime comments is feasible, but you need to configure a channel layer (e.g., Redis).",
  "Tagging can be implemented with a ManyToMany field or a dedicated package like django‑tag‑git.",
  "Consider adding pagination and caching for performance on large comment streams.",
  "Make sure to handle authentication and permissions for comment creation."
]

API reference

django_idea_analyzer(
    user_input: str,
    llm: Optional[BaseChatModel] = None,
    api_key: Optional[str] = None
) -> List[str]
Parameter Type Description
user_input str The textual description of the Django feature or project idea you want to analyze.
llm Optional[BaseChatModel] A LangChain LLM instance. If omitted, the function creates a ChatLLM7 instance automatically.
api_key Optional[str] API key for LLM7. If not supplied, the function reads LLM7_API_KEY from the environment.

The function returns a list of feedback strings extracted from the LLM response.


Using a custom LLM

You can plug any LangChain‑compatible chat model instead of the default LLM7. This is handy if you prefer OpenAI, Anthropic, Google Gemini, or a self‑hosted model.

OpenAI

from langchain_openai import ChatOpenAI
from django_idea_analyzer import django_idea_analyzer

my_llm = ChatOpenAI(model="gpt-4o-mini")
response = django_idea_analyzer(user_input=idea, llm=my_llm)

Anthropic

from langchain_anthropic import ChatAnthropic
from django_idea_analyzer import django_idea_analyzer

my_llm = ChatAnthropic(model="claude-3-haiku-20240307")
response = django_idea_analyzer(user_input=idea, llm=my_llm)

Google Generative AI

from langchain_google_genai import ChatGoogleGenerativeAI
from django_idea_analyzer import django_idea_analyzer

my_llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
response = django_idea_analyzer(user_input=idea, llm=my_llm)

LLM7 default configuration

  • Package: langchain_llm7 – pip install langchain-llm7
  • Default model: The free tier of LLM7 provides generous limits suitable for most development and testing scenarios.
  • Obtaining an API key: Register at https://token.llm7.io/ to receive a free key.
  • Overriding the key: Pass it directly via the api_key argument or set the environment variable LLM7_API_KEY.
export LLM7_API_KEY="your-llm7-api-key"

Contributing & Support

Feel free to open issues, submit pull requests, or ask questions. Happy coding!


License

This project is licensed under the MIT License. See the LICENSE file for details.

About

django-idea-analyzer provides structured feedback on Django project ideas, assessing feasibility, challenges, and best practices for efficient development evaluation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages