The GDP AI/ML Analytics Platform is a comprehensive, enterprise-grade economic intelligence system that revolutionizes GDP calculation, forecasting, and analysis. Built with cutting-edge AI/ML technologies, it provides unprecedented insights into global economic trends and patterns.
- 🧮 Multi-Method GDP Calculation: Expenditure, Income, and Output approaches with AI-enhanced accuracy
- 🤖 Advanced AI/ML Forecasting: Ensemble models including LSTM, Transformers, and XGBoost
- 🌐 Real-time Data Integration: Seamless integration with IMF, World Bank, OECD, and other data sources
- 💬 Natural Language Processing: Conversational queries about economic data using GPT integration
- 🎯 3D/VR Visualizations: Immersive data exploration with Three.js
- 🎤 Voice Interface: Speech-to-text and text-to-speech capabilities
- 📊 Interactive Dashboards: Real-time monitoring with customizable widgets
- 🔍 Anomaly Detection: AI-powered identification of unusual economic patterns
- 📈 Uncertainty Quantification: Bayesian inference for confidence intervals
- 🌍 Geospatial Analytics: Choropleth mapping with anomaly highlighting
- 📱 Mobile Responsive: Optimized for all devices and screen sizes
- 🔒 Enterprise Security: OAuth2, JWT, rate limiting, and audit trails
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Frontend │ │ Backend API │ │ ML Services │
│ (React/D3) │◄──►│ (FastAPI) │◄──►│ (TensorFlow) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
│ ┌─────────────────┐ │
│ │ Data Layer │ │
└─────────────►│ (PostgreSQL/ │◄─────────────┘
│ Redis/Neo4j) │
└─────────────────┘
│
┌─────────────────┐
│ External APIs │
│ (IMF/WB/OECD) │
└─────────────────┘
- Python 3.11+
- Node.js 18+
- Docker & Docker Compose
- PostgreSQL 15+
- Redis 7+
- Git
git clone https://github.com/bhanukaranwal/gdp-ai-platform.git
cd gdp-ai-platformCreate environment files:
# Backend environment
cp backend/.env.example backend/.env
# Frontend environment
cp frontend/.env.example frontend/.envConfigure your environment variables in the .env files:
# backend/.env
DATABASE_URL=postgresql://postgres:password@localhost:5432/gdp_platform
REDIS_URL=redis://localhost:6379
OPENAI_API_KEY=your_openai_api_key
SECRET_KEY=your_secret_key
JWT_SECRET=your_jwt_secret
WORLD_BANK_API_KEY=your_wb_api_key
IMF_API_KEY=your_imf_api_key# Start all services
docker-compose up -d
# Check service status
docker-compose ps
# View logs
docker-compose logs -fcd backend
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# Run database migrations
python scripts/init_db.py
# Start the backend server
uvicorn main:app --reload --host 0.0.0.0 --port 8000cd frontend
npm install
npm start- Frontend Dashboard: http://localhost:3000
- Backend API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
- Monitoring (Grafana): http://localhost:3001
import requests
# Calculate GDP using expenditure approach
response = requests.post('http://localhost:8000/api/v1/gdp/calculate',
headers={'Authorization': 'Bearer your_token'},
json={
"country_code": "USA",
"period": "2024-Q1",
"method": "expenditure",
"data": {
"consumption": 18500.0,
"investment": 4800.0,
"government_spending": 4200.0,
"exports": 2800.0,
"imports": 3300.0
},
"apply_ai_corrections": True,
"include_uncertainty": True
}
)
result = response.json()
print(f"GDP: ${result['data']['gdp_value']:,.2f} billion")# Ask questions in natural language
response = requests.post('http://localhost:8000/api/v1/ai/query',
headers={'Authorization': 'Bearer your_token'},
json={
"query": "Compare GDP growth between USA and China over the last 5 years",
"include_visualization": True
}
)
print(response.json()['data']['answer'])# Generate GDP forecasts
response = requests.post('http://localhost:8000/api/v1/forecasting/predict/USA',
headers={'Authorization': 'Bearer your_token'},
json={
"forecast_horizon": 4,
"model_preference": "ensemble",
"return_uncertainty": True
}
)
forecasts = response.json()['data']['predictions']
print(f"Next 4 quarters: {forecasts}")cd backend
pytest tests/ -v --cov=core --cov=services --cov=apicd frontend
npm test -- --coverage# Run with Docker
docker-compose -f docker-compose.test.yml up --abort-on-container-exit
# Manual integration tests
cd tests/integration
python -m pytest test_api_integration.py -v# Load testing with k6
cd tests/performance
k6 run load_test.js# Apply Kubernetes manifests
kubectl apply -f infrastructure/k8s/
# Check deployment status
kubectl get pods -n gdp-platform
# Monitor rollout
kubectl rollout status deployment/gdp-backend -n gdp-platform# Deploy to EKS
eksctl create cluster --name gdp-platform --region us-west-2
kubectl apply -f infrastructure/k8s/# Deploy to GKE
gcloud container clusters create gdp-platform --zone us-central1-a
kubectl apply -f infrastructure/k8s/# Deploy to AKS
az aks create --resource-group gdp-rg --name gdp-platform
kubectl apply -f infrastructure/k8s/Access Grafana at http://localhost:3001 with default credentials:
- Username:
admin - Password:
admin
- Application Performance: Response times, error rates, throughput
- ML Model Performance: Prediction accuracy, training metrics
- Data Quality: Completeness, accuracy, freshness scores
- System Resources: CPU, memory, disk usage
- Business Metrics: GDP calculation volumes, forecast accuracy
Configured alerts for:
- Service downtime
- High error rates
- Poor data quality
- ML model drift
- Resource exhaustion
| Variable | Description | Default |
|---|---|---|
DATABASE_URL |
PostgreSQL connection string | Required |
REDIS_URL |
Redis connection string | Required |
OPENAI_API_KEY |
OpenAI API key for NLP | Optional |
SECRET_KEY |
Application secret key | Required |
JWT_SECRET |
JWT token secret | Required |
LOG_LEVEL |
Logging level | INFO |
WORKERS |
Number of worker processes | 4 |
| Flag | Description | Default |
|---|---|---|
ENABLE_BLOCKCHAIN |
Enable blockchain features | False |
ENABLE_VR_SUPPORT |
Enable VR visualizations | False |
ENABLE_VOICE_INTERFACE |
Enable voice features | False |
ENABLE_FEDERATED_LEARNING |
Enable federated ML | False |
- OAuth2 with JWT tokens
- Role-based access control (RBAC)
- API rate limiting
- Input validation and sanitization
- SQL injection protection
- XSS prevention
- Encryption at rest (AES-256)
- Encryption in transit (TLS 1.3)
- Data anonymization for sensitive information
- Audit logging for all operations
- GDPR compliance features
# Run security scans
docker run --rm -v $(pwd):/app securecodewarrior/security-scanner:latest
bandit -r backend/ -f json -o security-report.jsonComprehensive API documentation is available at:
- Interactive Docs: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
- OpenAPI Spec: http://localhost:8000/openapi.json
POST /api/v1/gdp/calculate- Calculate GDPGET /api/v1/gdp/historical/{country}- Historical dataGET /api/v1/gdp/compare- Country comparison
POST /api/v1/forecasting/predict/{country}- Generate forecastsPOST /api/v1/ai/query- Natural language queriesPOST /api/v1/ai/insights- Generate insights
GET /api/v1/data/sources- Available data sourcesPOST /api/v1/data/sync- Sync external data
We welcome contributions! Please see our Contributing Guidelines for details.
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
- Python: Follow PEP 8, use Black formatter
- TypeScript/React: Follow Airbnb style guide
- Documentation: Write comprehensive docstrings and comments
- Testing: Maintain >90% test coverage
- Security: Follow OWASP guidelines
- User Guide - How to use the platform
- Developer Guide - Development setup and guidelines
- API Reference - Complete API documentation
- Deployment Guide - Production deployment instructions
- Architecture Guide - System architecture and design decisions
- Enhanced ML model ensemble
- Blockchain integration for data provenance
- Advanced VR/AR visualizations
- Mobile app development
- Federated learning implementation
- Real-time streaming analytics
- Advanced NLP with custom models
- Multi-language support
- Quantum computing integration
- Advanced AI interpretability
- Automated policy recommendations
- Global economic simulation engine
- WebSocket connections may timeout in some proxy configurations
- Large dataset exports (>100MB) may take extended time
- Safari browser may have limited WebRTC support for voice features
See our Issues page for current bugs and feature requests.
This project is licensed under the MIT License - see the LICENSE file for details.
- International Monetary Fund (IMF) for economic data standards
- World Bank for development indicators
- OECD for statistical frameworks
- OpenAI for AI/ML capabilities
- TensorFlow/PyTorch communities for ML frameworks
- React/D3.js communities for visualization tools
- Documentation: docs.gdp-platform.com
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: [email protected]
- Discord: Join our community
Built with ❤️ for economic intelligence and policy making
Making economic data accessible, understandable, and actionable for everyone.