Skip to content

HyperGDP is an AI-powered platform for calculating, forecasting, and visualizing GDP and economic data. It combines multi-method GDP computation, advanced ML models, real-time data integration, explainable AI, policy simulations, generative AI queries, and interactive dashboards — all in a modular, cloud-native architecture designed for 2025+.

License

Notifications You must be signed in to change notification settings

bhanukaranwal/GDP-Calculator-AI-ML

Repository files navigation

🚀 Ultra-Advanced GDP AI/ML Analytics Platform

Build Status License: MIT Python 3.11+ Node.js 18+

🌟 Overview

The GDP AI/ML Analytics Platform is a comprehensive, enterprise-grade economic intelligence system that revolutionizes GDP calculation, forecasting, and analysis. Built with cutting-edge AI/ML technologies, it provides unprecedented insights into global economic trends and patterns.

✨ Key Features

  • 🧮 Multi-Method GDP Calculation: Expenditure, Income, and Output approaches with AI-enhanced accuracy
  • 🤖 Advanced AI/ML Forecasting: Ensemble models including LSTM, Transformers, and XGBoost
  • 🌐 Real-time Data Integration: Seamless integration with IMF, World Bank, OECD, and other data sources
  • 💬 Natural Language Processing: Conversational queries about economic data using GPT integration
  • 🎯 3D/VR Visualizations: Immersive data exploration with Three.js
  • 🎤 Voice Interface: Speech-to-text and text-to-speech capabilities
  • 📊 Interactive Dashboards: Real-time monitoring with customizable widgets
  • 🔍 Anomaly Detection: AI-powered identification of unusual economic patterns
  • 📈 Uncertainty Quantification: Bayesian inference for confidence intervals
  • 🌍 Geospatial Analytics: Choropleth mapping with anomaly highlighting
  • 📱 Mobile Responsive: Optimized for all devices and screen sizes
  • 🔒 Enterprise Security: OAuth2, JWT, rate limiting, and audit trails

🏗️ Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Frontend      │    │   Backend API   │    │   ML Services   │
│   (React/D3)    │◄──►│   (FastAPI)     │◄──►│  (TensorFlow)   │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         │              ┌─────────────────┐              │
         │              │   Data Layer    │              │
         └─────────────►│ (PostgreSQL/    │◄─────────────┘
                        │  Redis/Neo4j)   │
                        └─────────────────┘
                                 │
                        ┌─────────────────┐
                        │  External APIs  │
                        │ (IMF/WB/OECD)   │
                        └─────────────────┘

🚀 Quick Start

Prerequisites

  • Python 3.11+
  • Node.js 18+
  • Docker & Docker Compose
  • PostgreSQL 15+
  • Redis 7+
  • Git

1. Clone the Repository

git clone https://github.com/bhanukaranwal/gdp-ai-platform.git
cd gdp-ai-platform

2. Environment Setup

Create environment files:

# Backend environment
cp backend/.env.example backend/.env

# Frontend environment
cp frontend/.env.example frontend/.env

Configure your environment variables in the .env files:

# backend/.env
DATABASE_URL=postgresql://postgres:password@localhost:5432/gdp_platform
REDIS_URL=redis://localhost:6379
OPENAI_API_KEY=your_openai_api_key
SECRET_KEY=your_secret_key
JWT_SECRET=your_jwt_secret
WORLD_BANK_API_KEY=your_wb_api_key
IMF_API_KEY=your_imf_api_key

3. Docker Deployment (Recommended)

# Start all services
docker-compose up -d

# Check service status
docker-compose ps

# View logs
docker-compose logs -f

4. Manual Setup

Backend Setup

cd backend
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt

# Run database migrations
python scripts/init_db.py

# Start the backend server
uvicorn main:app --reload --host 0.0.0.0 --port 8000

Frontend Setup

cd frontend
npm install
npm start

5. Access the Application

📊 Usage Examples

GDP Calculation via API

import requests

# Calculate GDP using expenditure approach
response = requests.post('http://localhost:8000/api/v1/gdp/calculate', 
    headers={'Authorization': 'Bearer your_token'},
    json={
        "country_code": "USA",
        "period": "2024-Q1",
        "method": "expenditure",
        "data": {
            "consumption": 18500.0,
            "investment": 4800.0,
            "government_spending": 4200.0,
            "exports": 2800.0,
            "imports": 3300.0
        },
        "apply_ai_corrections": True,
        "include_uncertainty": True
    }
)

result = response.json()
print(f"GDP: ${result['data']['gdp_value']:,.2f} billion")

Natural Language Queries

# Ask questions in natural language
response = requests.post('http://localhost:8000/api/v1/ai/query',
    headers={'Authorization': 'Bearer your_token'},
    json={
        "query": "Compare GDP growth between USA and China over the last 5 years",
        "include_visualization": True
    }
)

print(response.json()['data']['answer'])

Forecasting

# Generate GDP forecasts
response = requests.post('http://localhost:8000/api/v1/forecasting/predict/USA',
    headers={'Authorization': 'Bearer your_token'},
    json={
        "forecast_horizon": 4,
        "model_preference": "ensemble",
        "return_uncertainty": True
    }
)

forecasts = response.json()['data']['predictions']
print(f"Next 4 quarters: {forecasts}")

🧪 Testing

Backend Tests

cd backend
pytest tests/ -v --cov=core --cov=services --cov=api

Frontend Tests

cd frontend
npm test -- --coverage

Integration Tests

# Run with Docker
docker-compose -f docker-compose.test.yml up --abort-on-container-exit

# Manual integration tests
cd tests/integration
python -m pytest test_api_integration.py -v

Performance Tests

# Load testing with k6
cd tests/performance
k6 run load_test.js

🚀 Deployment

Production Deployment with Kubernetes

# Apply Kubernetes manifests
kubectl apply -f infrastructure/k8s/

# Check deployment status
kubectl get pods -n gdp-platform

# Monitor rollout
kubectl rollout status deployment/gdp-backend -n gdp-platform

Cloud Deployment

AWS

# Deploy to EKS
eksctl create cluster --name gdp-platform --region us-west-2
kubectl apply -f infrastructure/k8s/

Google Cloud

# Deploy to GKE
gcloud container clusters create gdp-platform --zone us-central1-a
kubectl apply -f infrastructure/k8s/

Azure

# Deploy to AKS
az aks create --resource-group gdp-rg --name gdp-platform
kubectl apply -f infrastructure/k8s/

📈 Monitoring & Observability

Metrics Dashboard

Access Grafana at http://localhost:3001 with default credentials:

  • Username: admin
  • Password: admin

Key Metrics Monitored

  • Application Performance: Response times, error rates, throughput
  • ML Model Performance: Prediction accuracy, training metrics
  • Data Quality: Completeness, accuracy, freshness scores
  • System Resources: CPU, memory, disk usage
  • Business Metrics: GDP calculation volumes, forecast accuracy

Alerts

Configured alerts for:

  • Service downtime
  • High error rates
  • Poor data quality
  • ML model drift
  • Resource exhaustion

🔧 Configuration

Environment Variables

Variable Description Default
DATABASE_URL PostgreSQL connection string Required
REDIS_URL Redis connection string Required
OPENAI_API_KEY OpenAI API key for NLP Optional
SECRET_KEY Application secret key Required
JWT_SECRET JWT token secret Required
LOG_LEVEL Logging level INFO
WORKERS Number of worker processes 4

Feature Flags

Flag Description Default
ENABLE_BLOCKCHAIN Enable blockchain features False
ENABLE_VR_SUPPORT Enable VR visualizations False
ENABLE_VOICE_INTERFACE Enable voice features False
ENABLE_FEDERATED_LEARNING Enable federated ML False

🔒 Security

Authentication & Authorization

  • OAuth2 with JWT tokens
  • Role-based access control (RBAC)
  • API rate limiting
  • Input validation and sanitization
  • SQL injection protection
  • XSS prevention

Data Protection

  • Encryption at rest (AES-256)
  • Encryption in transit (TLS 1.3)
  • Data anonymization for sensitive information
  • Audit logging for all operations
  • GDPR compliance features

Security Scanning

# Run security scans
docker run --rm -v $(pwd):/app securecodewarrior/security-scanner:latest
bandit -r backend/ -f json -o security-report.json

📚 API Documentation

Comprehensive API documentation is available at:

Core Endpoints

GDP Calculation

  • POST /api/v1/gdp/calculate - Calculate GDP
  • GET /api/v1/gdp/historical/{country} - Historical data
  • GET /api/v1/gdp/compare - Country comparison

AI/ML Services

  • POST /api/v1/forecasting/predict/{country} - Generate forecasts
  • POST /api/v1/ai/query - Natural language queries
  • POST /api/v1/ai/insights - Generate insights

Data Integration

  • GET /api/v1/data/sources - Available data sources
  • POST /api/v1/data/sync - Sync external data

🤝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit your changes: git commit -m 'Add amazing feature'
  4. Push to the branch: git push origin feature/amazing-feature
  5. Open a Pull Request

Code Standards

  • Python: Follow PEP 8, use Black formatter
  • TypeScript/React: Follow Airbnb style guide
  • Documentation: Write comprehensive docstrings and comments
  • Testing: Maintain >90% test coverage
  • Security: Follow OWASP guidelines

📖 Documentation

🗺️ Roadmap

Version 1.1 (Q2 2024)

  • Enhanced ML model ensemble
  • Blockchain integration for data provenance
  • Advanced VR/AR visualizations
  • Mobile app development

Version 1.2 (Q3 2024)

  • Federated learning implementation
  • Real-time streaming analytics
  • Advanced NLP with custom models
  • Multi-language support

Version 2.0 (Q4 2024)

  • Quantum computing integration
  • Advanced AI interpretability
  • Automated policy recommendations
  • Global economic simulation engine

🐛 Known Issues

  • WebSocket connections may timeout in some proxy configurations
  • Large dataset exports (>100MB) may take extended time
  • Safari browser may have limited WebRTC support for voice features

See our Issues page for current bugs and feature requests.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • International Monetary Fund (IMF) for economic data standards
  • World Bank for development indicators
  • OECD for statistical frameworks
  • OpenAI for AI/ML capabilities
  • TensorFlow/PyTorch communities for ML frameworks
  • React/D3.js communities for visualization tools

📞 Support

🌟 Star History

Star History Chart


Built with ❤️ for economic intelligence and policy making

Making economic data accessible, understandable, and actionable for everyone.

About

HyperGDP is an AI-powered platform for calculating, forecasting, and visualizing GDP and economic data. It combines multi-method GDP computation, advanced ML models, real-time data integration, explainable AI, policy simulations, generative AI queries, and interactive dashboards — all in a modular, cloud-native architecture designed for 2025+.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published