SeFEF is a Seizure Forecasting Evaluation Framework written in Python.
The framework standardizes the development, evaluation, and reporting of individualized algorithms for seizure likelihood forecast.
SeFEF aims to decrease development time and minimize implementation errors by automating key procedures within data preparation, training/testing, and computation of evaluation metrics.
evaluationmodule: implements time series cross-validation.labelingmodule: automatically labels samples according to the desired pre-ictal duration and prediction latency.postprocessingmodule: processes individual predicted probabilities into a unified forecast according to the desired forecast horizon.scoringmodule: computes both deterministic and probabilistic metrics according to the horizon of the forecast.
Installation can be easily done with pip:
$ pip install sefefThe code below loads the metadata from an existing dataset from the examples folder, splits creates a Dataset instance, and creates an adequate split for a time series cross-validation. It also provides an example of model development and evaluation through a simple probabilistic estimator that leverages periodicity in event data.
This example dataset contains synthesized event occurrence timestamps spanning 2.5 years, starting from January 1, 2020. Events occur periodically, with an initial cycle of 28 days (in seconds), subject to a small random variation of ±1 day.
# built-in
import os
# third-party
import h5py
import numpy as np
import pandas as pd
# local
from config import forecast_horizon, directory_information
from seizureforecast.optimize_threshold import optimize_thr_GMM
from seizureforecast.prepare_data import create_events_dataset
from seizureforecast.model_periodicity_analysis import VonMisesEstimator
# SeFEF
from sefef import labeling, evaluation, postprocessing, visualization, scoring
# Data preparation - read files
event_times_metadata = pd.read_csv(os.path.join(directory_information['data_folder_path'], 'event_times_metadata.csv'))
with open(os.path.join(directory_information['data_folder_path'], 'synthetic_onsets.txt'), 'r') as f:
event_onsets = [float(line.strip()) for line in f]
create_events_dataset(event_onsets, freq=['D', 'h'][forecast_horizon < 60*60*24], dataset_filepath=os.path.join(
directory_information['preprocessed_data_path'], f'event_times_dataset.h5'))
# SeFEF - labeling module
with h5py.File(os.path.join(directory_information['preprocessed_data_path'], f'event_times_dataset.h5'), 'r+') as h5dataset:
if 'annotations' not in h5dataset.keys():
labeling.add_annotations(
h5dataset, sz_onsets_ts=event_onsets, preictal_duration=forecast_horizon, prediction_latency=0)
if 'sz_onsets' not in h5dataset.keys():
labeling.add_sz_onsets(
h5dataset, sz_onsets_ts=event_onsets)
try:
event_times_dataset = h5py.File(os.path.join(
directory_information['preprocessed_data_path'], f'event_times_dataset.h5'), 'r')
# SeFEF - evaluation module
tscv = evaluation.TimeSeriesCV(
preictal_duration=forecast_horizon,
prediction_latency=0,
post_sz_interval=1*60*60,
pre_lead_sz_interval=4*60*60,
)
dataset = evaluation.Dataset(timestamps=event_times_dataset['timestamps'][(
)], samples_duration=[forecast_horizon]*len(event_times_dataset['timestamps'][(
)]), sz_onsets=event_times_dataset['sz_onsets'][()])
tscv.split(dataset)
tscv.plot(dataset)
# Operationalizing CV
for ifold, (train_data, test_data) in enumerate(tscv.iterate(event_times_dataset)):
print(
f'\n---------------------\nStarting TSCV fold {ifold+1}/{tscv.n_folds}\n---------------------')
X_train, y_train, ts_train, sz_onsets_train = train_data
X_test, _, ts_test, sz_onsets_test = test_data
seizure_hist_freq = pd.to_datetime(pd.Series(sz_onsets_train), unit='s').dt.floor(['D', 'h'][forecast_horizon < 3600*24]).nunique(
) / pd.to_datetime(pd.Series(ts_train), unit='s').dt.floor(['D', 'h'][forecast_horizon < 3600*24]).nunique()
print(f'Historical seizure frequency: {seizure_hist_freq}')
# List underlying cycles with periods ranging from 2-periods to 60-periods
total_duration = pd.to_timedelta(
(ts_train[-1] - ts_train[0]) + forecast_horizon, unit='s')
fast_cycles = [pd.Timedelta(hours=t) for t in [6, 12, 24]]
slow_cycles = [pd.Timedelta(days=t) for t in list(
range(3, min([60, int(np.floor(total_duration.days * 0.5)+1)])))]
candidate_cycles = fast_cycles + slow_cycles
candidate_cycles = [cycle for cycle in candidate_cycles if cycle > pd.to_timedelta(
forecast_horizon, unit='s')]
# Compute likelihoods for phase bins, according to significant cycles.
estimator = VonMisesEstimator(forecast_horizon=forecast_horizon)
try:
estimator.train(train_ts=X_train, train_labels=y_train,
candidate_cycles=[cycle.total_seconds() for cycle in candidate_cycles], si_thr=0.6)
estimator.plot_fit_dist(X_train, y_train)
except ValueError as e:
print(e)
continue
# Optimize high-probability threshold
high_likelihood_thr = optimize_thr_GMM(np.reshape(
estimator.predict(test_ts=X_train), (-1, 1)))
# Compute probability estimates given samples' timestamps
pred = estimator.predict(test_ts=X_test)
# SeFEF - postprocessing module
forecast = postprocessing.Forecast(pred, ts_test)
forecasts, ts = forecast.postprocess(
forecast_horizon=forecast_horizon, smooth_win=2*60*60, origin='clock-time')
# SeFEF - visualization module
fig = visualization.plot_forecasts(
forecasts, ts, sz_onsets_test, high_likelihood_thr, forecast_horizon, title='Daily seizure probability')
# SeFEF - scoring module
scorer = scoring.Scorer(metrics2compute=['Sen', 'FPR', 'TiW', 'AUC_TiW', 'resolution', 'reliability', 'BS', 'skill'],
sz_onsets=sz_onsets_test,
forecast_horizon=forecast_horizon,
reference_method='prior_prob',
hist_prior_prob=seizure_hist_freq)
fold_performance = scorer.compute_metrics(
forecasts, ts, binning_method='uniform', num_bins=5, draw_diagram=True, threshold=high_likelihood_thr)
# Print results
for metric in fold_performance:
fold_performance[metric] = f'{fold_performance[metric]:0.3f}'
print(fold_performance)
except KeyboardInterrupt:
print('Interrupted by user.')
except Exception as e:
print(e)
finally:
event_times_dataset.close()The example methodology (available in the examples folder) results in a daily forecast as the one below (with synthetic data), generated with SeFEF's visualization module.

