Skip to content

Performed IPL 2025 data analysis using SQL, Python & Power BI to uncover team stats, player performance trends, and match insights

Notifications You must be signed in to change notification settings

analystfuzail/IPL-2025_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 

Repository files navigation

🏏 IPL 2025 Data Analysis (Python)

πŸ“Œ Project Overview

This project performs an in-depth analysis of the Indian Premier League (IPL) 2025 dataset using Python.
It explores matches, ball-by-ball data, players, venues, and performance trends to extract insights, visualize trends, and build baseline predictive models (e.g., match outcome prediction).


πŸ“‚ Project Structure

ipl-2025-analysis/ β”œβ”€β”€ data/ # Raw IPL 2025 datasets (matches.csv, ball_by_ball.csv, players.csv) β”œβ”€β”€ notebooks/ β”‚ β”œβ”€β”€ 01-data-cleaning.ipynb β”‚ β”œβ”€β”€ 02-eda.ipynb β”‚ └── 03-modeling.ipynb β”œβ”€β”€ src/ # Utility scripts (data loaders, functions) β”œβ”€β”€ reports/ β”‚ └── figures/ # Saved visualizations β”œβ”€β”€ requirements.txt └── README.md

⚠️ Note: Raw data files are large and may not be included. Download from the sources below and place them inside the data/ folder.


πŸ“Š Data Sources

  • IPL 2025 Records – Kaggle
  • IPL Dataset 2008–2025 – Kaggle
  • GitHub IPL Dataset
  • ESPNcricinfo (for validation)

βš™οΈ Installation & Setup

# Clone the repository
git clone https://github.com/yourusername/ipl-2025-analysis.git
cd ipl-2025-analysis

# Create a virtual environment
python -m venv venv
source venv/bin/activate   # Linux/Mac
venv\Scripts\activate      # Windows

# Install dependencies
pip install -r requirements.txt

# Launch Jupyter Lab
jupyter lab

##πŸ“ˆ Analysis Highlights

βœ… Season-wise Summary: Matches, winners, average runs/wickets

βœ… Top Players: Batsmen (runs, strike rates), Bowlers (wickets, economy rates)

βœ… Venue Analysis: Average scores, win percentages

βœ… Toss Impact: Toss vs Match Outcome analysis

βœ… Overs Breakdown: Powerplay, middle overs, death overs

βœ… Predictive Modeling: Baseline match outcome prediction using ML

βœ… Visualizations: Matplotlib, Seaborn, and Plotly

##πŸš€ Future Improvements

Build a live win probability model using ball-by-ball data

Deploy interactive dashboards with Streamlit or Power BI

Extend analysis across multiple IPL seasons (2008–2025)

##πŸ† Credits

Data Sources: Kaggle, GitHub IPL Datasets, ESPNcricinfo

Purpose: Data Analysis portfolio project using Python

About

Performed IPL 2025 data analysis using SQL, Python & Power BI to uncover team stats, player performance trends, and match insights

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published