Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 40 additions & 38 deletions easy_rec/python/compat/optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,51 +362,53 @@ def optimize_loss(loss,
# clip_ops.global_norm(list(zip(*gradients))[0]))

# Optionally clip gradients by global norm.
if isinstance(clip_gradients, float):
# gradients = _clip_gradients_by_norm(gradients, clip_gradients)
sparse_norm, dense_norm, grad_norm = _get_grad_norm(
gradients, embedding_parallel)
summary.scalar('global_norm/sparse_grad', sparse_norm)
summary.scalar('global_norm/dense_grad', dense_norm)
summary.scalar('global_norm/gradient_norm', grad_norm)
grads = [x[0] for x in gradients]
vars = [x[1] for x in gradients]
clipped_grads, _ = clip_ops.clip_by_global_norm(
grads, clip_gradients, use_norm=grad_norm)
gradients = list(zip(clipped_grads, vars))
elif callable(clip_gradients):
gradients = clip_gradients(gradients)
elif clip_gradients is not None:
raise ValueError('Unknown type %s for clip_gradients' %
type(clip_gradients))
if not embedding_parallel:
if isinstance(clip_gradients, float):
# gradients = _clip_gradients_by_norm(gradients, clip_gradients)
sparse_norm, dense_norm, grad_norm = _get_grad_norm(
gradients, embedding_parallel)
summary.scalar('global_norm/sparse_grad', sparse_norm)
summary.scalar('global_norm/dense_grad', dense_norm)
summary.scalar('global_norm/gradient_norm', grad_norm)
grads = [x[0] for x in gradients]
vars = [x[1] for x in gradients]
clipped_grads, _ = clip_ops.clip_by_global_norm(
grads, clip_gradients, use_norm=grad_norm)
gradients = list(zip(clipped_grads, vars))
elif callable(clip_gradients):
gradients = clip_gradients(gradients)
elif clip_gradients is not None:
raise ValueError('Unknown type %s for clip_gradients' %
type(clip_gradients))

# Add scalar summary for loss.
if 'loss' in summaries:
summary.scalar('loss', loss)

# Add histograms for variables, gradients and gradient norms.

for gradient, variable in gradients:
if isinstance(gradient, indexed_slices.IndexedSlices):
grad_values = gradient.values
else:
grad_values = gradient

if grad_values is not None:
var_name = variable.name.replace(':', '_')
if 'gradients' in summaries:
summary.histogram('gradients/%s' % var_name, grad_values)
if 'gradient_norm' in summaries:
summary.scalar('gradient_norm/%s' % var_name,
clip_ops.global_norm([grad_values]))

if not embedding_parallel:
for gradient, variable in gradients:
if isinstance(gradient, indexed_slices.IndexedSlices):
grad_values = gradient.values
else:
grad_values = gradient

if grad_values is not None:
var_name = variable.name.replace(':', '_')
if 'gradients' in summaries:
summary.histogram('gradients/%s' % var_name, grad_values)
if 'gradient_norm' in summaries:
summary.scalar('gradient_norm/%s' % var_name,
clip_ops.global_norm([grad_values]))

if clip_gradients is not None and ('global_gradient_norm' in summaries or
'gradient_norm' in summaries):
sparse_norm, dense_norm, grad_norm = _get_grad_norm(
gradients, embedding_parallel)
summary.scalar('global_norm/clipped_sparse_grad', sparse_norm)
summary.scalar('global_norm/clipped_dense_grad', dense_norm)
summary.scalar('global_norm/clipped_gradient_norm', grad_norm)
if clip_gradients is not None and ('global_gradient_norm' in summaries or
'gradient_norm' in summaries):
sparse_norm, dense_norm, grad_norm = _get_grad_norm(
gradients, embedding_parallel)
summary.scalar('global_norm/clipped_sparse_grad', sparse_norm)
summary.scalar('global_norm/clipped_dense_grad', dense_norm)
summary.scalar('global_norm/clipped_gradient_norm', grad_norm)

# Create gradient updates.
def _apply_grad():
Expand Down