Skip to content

adosar/retnext

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

23 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– About

RetNeXt is a Python package for deep learning on 3D energy images of porous materials. It provides:

  • The model architecture, a 3D convolutional neural network for voxel-based material representations.

  • Pretrained model via multi-task learning (ADD REFERENCE), enabling effective feature extraction and transfer learning.

  • Built-in transformations for preprocessing and data augmentation of 3D energy images.

The pretrained model can be used as a feature extractor or fine-tuned for adsorption property prediction.

πŸš€ Tutorial

Before starting, the following packages must be installed:

pip install retnext
pip install pymoxel>=0.4.0
pip install aidsorb>=2.0.0

Note

All examples below assume the use of the pretrained model. Therefore, the image generation and preprocessing parameters must be configured accordingly.

🎨 Generate the energy images

You can generate the energy images from the CLI as following:

moxel path/to/CIFs path/to/voxels_data/ --grid_size=32 --cubic_box=30

Alternatively, for more fine-grained control over the materials to be processed:

from moxel.utils import voxels_from_files

cifs = ['foo.cif', 'bar.cif', ...]
voxels_from_files(cifs, 'path/to/voxels_data/', grid_size=32, cubic_box=30)

❄️ Use RetNeXt as feature extractor

Energy images are passed through the pretrained model to extract 128-D features, which are then stored in a .csv file.

Show example
from types import NoneType
import os

import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.utils.data._utils.collate import default_collate_fn_map
from torchvision.transforms.v2 import Compose
from retnext.modules import RetNeXt
from retnext.transforms import AddChannelDim, BoltzmannFactor
from aidsorb.data import PCDDataset as VoxelsDataset


# Required for collating unlabeled samples
def collate_none(batch, *, collate_fn_map):
    return None


# Get the names of the materials
names = [f.removesuffix('.npy') for f in os.listdir('path/to/voxels_data/')]

# Preprocessing transformations
transform_x = Compose([AddChannelDim(), BoltzmannFactor()])

# Create the dataset
dataset = VoxelsDataset(names, path_to_X='path/to/voxels_data/', transform_x=transform_x)

# Create the dataloader (adjust batch_size and num_workers)
dataloader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=256, num_workers=8)
default_collate_fn_map.update({NoneType: collate_none})

# Load pretrained weights
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RetNeXt(pretrained=True).to(device)

# Freeze the model
model.requires_grad_(False)
model.eval()
model.fc = torch.nn.Identity()  # So .forward() returns the embeddings.

# Extract features
Z = torch.cat([
    model(x.to(device))
    for x, _ in tqdm(dataloader, desc='Generating embeddings')
])

# Store features in .csv file
df = pd.DataFrame(Z.cpu().numpy(), index=names)
df.to_csv(f'emdeddings.csv', index=True, index_label='name')

Tip

You can use these features alone or combine them with others features (e.g. structural descriptors) to train classical machine learning algorithms (e.g. Random Forest or XGBoost) for adsorption property prediction.

πŸ”₯ Fine-tune RetNeXt

  1. Split the data into train, validation and test:

    aidsorb prepare path/to/voxels_data/ --split_ratio='[0.7, 0.15, 0.15]' --seed=42
  2. Freeze part of the model and train it:

    Show example
    import torch
    from lightning.pytorch import Trainer, seed_everything
    from torchmetrics import R2Score, MeanAbsoluteError, MetricCollection
    from aidsorb.datamodules import PCDDataModule as VoxelsDataModule
    from aidsorb.litmodules import PCDLit as VoxelsLit
    from torchvision.transforms.v2 import Compose, RandomChoice
    from retnext.modules import RetNeXt
    from retnext.transforms import AddChannelDim, BoltzmannFactor, RandomRotate90, RandomReflect, RandomFlip
    
    # For reproducibility
    seed_everything(42, workers=True)
    
    # Load pretrained weights and set the number of outputs
    model = RetNeXt(n_outputs=1, pretrained=True)
    
    # Option 1
    # Linear evaluation (freeze the backbone and train only the output layer)
    #model.backbone.requires_grad_(False)
    #model.backbone.eval()
    
    # Option 2
    # Fine-tune the last two conv and output layers
    model.backbone[:7].requires_grad_(False)
    model.backbone[:7].eval()
    
    # Option 3
    # Fine-tune all layers (just freeze the first BN which acts as standardizer)
    #model.backbone[0].requires_grad_(False)
    #model.backbone[0].eval()
    
    # Preprocessing and data augmentation transformations
    eval_transform_x = Compose([AddChannelDim(), BoltzmannFactor()])
    train_transform_x = Compose([
        AddChannelDim(), BoltzmannFactor(),
        RandomChoice([
            torch.nn.Identity(),
            RandomRotate90(),
            RandomFlip(),
            RandomReflect()
            ])
        ])
    
    # Create the datamodule
    datamodule = VoxelsDataModule(
        path_to_X='path/to/voxels_data/',
    	path_to_Y='path/to/labels.csv',
        index_col='id',
    	labels=['adsorption_property'],
        train_batch_size=32, eval_batch_size=256,
        train_transform_x=train_transform_x,
        eval_transform_x=eval_transform_x,
        shuffle=True, drop_last=True,
        config_dataloaders=dict(num_workers=8),
    )
    datamodule.setup()
    
    # Configure loss, metrics and optimizer
    criterion = torch.nn.MSELoss()
    metric = MetricCollection(R2Score(), MeanAbsoluteError())
    config_optimizer = dict(name='Adam', hparams=dict(lr=1e-3))  # Adjust the learning rate
    
    # Create the litmodel
    litmodel = VoxelsLit(model, criterion, metric=metric, config_optimizer=config_optimizer)
    
    # Create the trainer
    trainer = Trainer(max_epochs=5)
    
    # Initialize last bias with target mean (optional but recommended)
    train_names = list(datamodule.train_dataset.pcd_names)
    y_train_mean = datamodule.train_dataset.Y.loc[train_names].mean().item()
    torch.nn.init.constant_(litmodel.model.fc.bias, y_train_mean)
    
    # Train and test the model
    trainer.fit(litmodel, datamodule=datamodule)
    trainer.test(litmodel, datamodule=datamodule)
    Show RetNeXt architecture
    RetNeXt(
      (backbone): Sequential(
        (0): BatchNorm3d(1, eps=1e-05, momentum=None, affine=False, track_running_stats=True)
        (1): Sequential(
          (0): Conv3d(1, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False)
          (1): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (2): Sequential(
          (0): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False)
          (1): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (3): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (4): Sequential(
          (0): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False)
          (1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (5): Sequential(
          (0): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False)
          (1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (6): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (7): Sequential(
          (0): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), bias=False)
          (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (8): Sequential(
          (0): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), bias=False)
          (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): ReLU()
        )
        (9): AdaptiveAvgPool3d(output_size=1)
        (10): Flatten(start_dim=1, end_dim=-1)
      )
      (fc): Linear(in_features=128, out_features=1, bias=True)
    )
    Show example labels.csv
    id,adsorption_property
    sample_001,0.123
    sample_002,0.456
    sample_003,0.789
    sample_004,1.234
    sample_005,0.987
    

Note

The example above shows how to fine-tune the pretrained model for a regression task. For classification, you only need to adjust the final layer (e.g. model = RetNeXt(n_outputs=10, pretrained=True) for a 10-class classification task), and use the proper loss and metrics.

For more details and customization options, refer to the AIdsorb documentation.

πŸ“‘ Citing

If you use RetNeXt in your research, please consider citing the following work:

Add bibtex entry.

βš–οΈ License

RetNeXt is released under the GNU General Public License v3.0 only.

About

Deep learning on 3D energy images of porous materials.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages