RetNeXt is a Python package for deep learning on 3D energy images of porous materials. It provides:
-
The model architecture, a 3D convolutional neural network for voxel-based material representations.
-
Pretrained model via multi-task learning (ADD REFERENCE), enabling effective feature extraction and transfer learning.
-
Built-in transformations for preprocessing and data augmentation of 3D energy images.
The pretrained model can be used as a feature extractor or fine-tuned for adsorption property prediction.
Before starting, the following packages must be installed:
pip install retnext
pip install pymoxel>=0.4.0
pip install aidsorb>=2.0.0Note
All examples below assume the use of the pretrained model. Therefore, the image generation and preprocessing parameters must be configured accordingly.
You can generate the energy images from the CLI as following:
moxel path/to/CIFs path/to/voxels_data/ --grid_size=32 --cubic_box=30Alternatively, for more fine-grained control over the materials to be processed:
from moxel.utils import voxels_from_files
cifs = ['foo.cif', 'bar.cif', ...]
voxels_from_files(cifs, 'path/to/voxels_data/', grid_size=32, cubic_box=30)Energy images are passed through the pretrained model to extract 128-D features, which are then stored in a .csv file.
Show example
from types import NoneType
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.utils.data._utils.collate import default_collate_fn_map
from torchvision.transforms.v2 import Compose
from retnext.modules import RetNeXt
from retnext.transforms import AddChannelDim, BoltzmannFactor
from aidsorb.data import PCDDataset as VoxelsDataset
# Required for collating unlabeled samples
def collate_none(batch, *, collate_fn_map):
return None
# Get the names of the materials
names = [f.removesuffix('.npy') for f in os.listdir('path/to/voxels_data/')]
# Preprocessing transformations
transform_x = Compose([AddChannelDim(), BoltzmannFactor()])
# Create the dataset
dataset = VoxelsDataset(names, path_to_X='path/to/voxels_data/', transform_x=transform_x)
# Create the dataloader (adjust batch_size and num_workers)
dataloader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=256, num_workers=8)
default_collate_fn_map.update({NoneType: collate_none})
# Load pretrained weights
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RetNeXt(pretrained=True).to(device)
# Freeze the model
model.requires_grad_(False)
model.eval()
model.fc = torch.nn.Identity() # So .forward() returns the embeddings.
# Extract features
Z = torch.cat([
model(x.to(device))
for x, _ in tqdm(dataloader, desc='Generating embeddings')
])
# Store features in .csv file
df = pd.DataFrame(Z.cpu().numpy(), index=names)
df.to_csv(f'emdeddings.csv', index=True, index_label='name')Tip
You can use these features alone or combine them with others features (e.g. structural descriptors) to train classical machine learning algorithms (e.g. Random Forest or XGBoost) for adsorption property prediction.
-
Split the data into train, validation and test:
aidsorb prepare path/to/voxels_data/ --split_ratio='[0.7, 0.15, 0.15]' --seed=42 -
Freeze part of the model and train it:
Show example
import torch from lightning.pytorch import Trainer, seed_everything from torchmetrics import R2Score, MeanAbsoluteError, MetricCollection from aidsorb.datamodules import PCDDataModule as VoxelsDataModule from aidsorb.litmodules import PCDLit as VoxelsLit from torchvision.transforms.v2 import Compose, RandomChoice from retnext.modules import RetNeXt from retnext.transforms import AddChannelDim, BoltzmannFactor, RandomRotate90, RandomReflect, RandomFlip # For reproducibility seed_everything(42, workers=True) # Load pretrained weights and set the number of outputs model = RetNeXt(n_outputs=1, pretrained=True) # Option 1 # Linear evaluation (freeze the backbone and train only the output layer) #model.backbone.requires_grad_(False) #model.backbone.eval() # Option 2 # Fine-tune the last two conv and output layers model.backbone[:7].requires_grad_(False) model.backbone[:7].eval() # Option 3 # Fine-tune all layers (just freeze the first BN which acts as standardizer) #model.backbone[0].requires_grad_(False) #model.backbone[0].eval() # Preprocessing and data augmentation transformations eval_transform_x = Compose([AddChannelDim(), BoltzmannFactor()]) train_transform_x = Compose([ AddChannelDim(), BoltzmannFactor(), RandomChoice([ torch.nn.Identity(), RandomRotate90(), RandomFlip(), RandomReflect() ]) ]) # Create the datamodule datamodule = VoxelsDataModule( path_to_X='path/to/voxels_data/', path_to_Y='path/to/labels.csv', index_col='id', labels=['adsorption_property'], train_batch_size=32, eval_batch_size=256, train_transform_x=train_transform_x, eval_transform_x=eval_transform_x, shuffle=True, drop_last=True, config_dataloaders=dict(num_workers=8), ) datamodule.setup() # Configure loss, metrics and optimizer criterion = torch.nn.MSELoss() metric = MetricCollection(R2Score(), MeanAbsoluteError()) config_optimizer = dict(name='Adam', hparams=dict(lr=1e-3)) # Adjust the learning rate # Create the litmodel litmodel = VoxelsLit(model, criterion, metric=metric, config_optimizer=config_optimizer) # Create the trainer trainer = Trainer(max_epochs=5) # Initialize last bias with target mean (optional but recommended) train_names = list(datamodule.train_dataset.pcd_names) y_train_mean = datamodule.train_dataset.Y.loc[train_names].mean().item() torch.nn.init.constant_(litmodel.model.fc.bias, y_train_mean) # Train and test the model trainer.fit(litmodel, datamodule=datamodule) trainer.test(litmodel, datamodule=datamodule)
Show RetNeXt architecture
RetNeXt( (backbone): Sequential( (0): BatchNorm3d(1, eps=1e-05, momentum=None, affine=False, track_running_stats=True) (1): Sequential( (0): Conv3d(1, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False) (1): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (2): Sequential( (0): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False) (1): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (3): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Sequential( (0): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False) (1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (5): Sequential( (0): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=same, bias=False) (1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (6): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (7): Sequential( (0): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), bias=False) (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (8): Sequential( (0): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), bias=False) (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (9): AdaptiveAvgPool3d(output_size=1) (10): Flatten(start_dim=1, end_dim=-1) ) (fc): Linear(in_features=128, out_features=1, bias=True) )
Show example
labels.csvid,adsorption_property sample_001,0.123 sample_002,0.456 sample_003,0.789 sample_004,1.234 sample_005,0.987
Note
The example above shows how to fine-tune the pretrained model for a regression task.
For classification, you only need to adjust the final layer (e.g. model = RetNeXt(n_outputs=10, pretrained=True)
for a 10-class classification task), and use the proper loss and metrics.
For more details and customization options, refer to the AIdsorb documentation.
If you use RetNeXt in your research, please consider citing the following work:
Add bibtex entry.RetNeXt is released under the GNU General Public License v3.0 only.