Skip to content

A production-style FastAPI + GenAI microservice for personalized scholarship recommendations using a vector store and plug-and-play LLM (RAG pattern). πŸš€πŸŽ“

Notifications You must be signed in to change notification settings

Vamsikrishnv/genai_scholarship_engine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸŽ“ GenAI Scholarship Engine

A clean, production-style FastAPI + GenAI microservice for delivering personalized scholarship recommendations using a simple vector search and plug-and-play LLM pipeline (RAG pattern).

πŸš€ What it does

βœ… Accepts a student's academic profile (name, major, GPA, interests) βœ… Retrieves relevant scholarships using a vector-like filter (mocked β€” ready to swap with FAISS or Pinecone) βœ… Generates tailored advice using a mock LLM call (plug in OpenAI, Bedrock, or LangChain easily) βœ… Provides auto-generated Swagger UI for live testing and easy integration

βš™οΈ Tech Stack

  • Python 3.13
  • FastAPI β€” modern, async Python web framework
  • Uvicorn β€” lightning-fast ASGI server
  • Pydantic β€” for robust data validation
  • Vector store mock β€” JSON-based; can be replaced with Pinecone, FAISS, or your own embeddings
  • LangChain-ready logic β€” for future LLM orchestration

πŸ“‚ Project Highlights

Clean modular structure, .gitignore for safe commits, .env.example for environment configs, and clear README for fast onboarding.

Perfect for demonstrating RAG-like design, GenAI microservices, and practical API engineering in interviews or real-world POCs.

About

A production-style FastAPI + GenAI microservice for personalized scholarship recommendations using a vector store and plug-and-play LLM (RAG pattern). πŸš€πŸŽ“

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages