Skip to content

Applied Machine Learning & Deep Learning models across NLP, Computer Vision, Recommender Systems and Classical ML

Notifications You must be signed in to change notification settings

Tania526-sudo/applied-ai-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

applied-ai-models

Applied AI Models Portfolio (ML/DL • NLP • CV • Recommenders)

Python NumPy Pandas scikit-learn TensorFlow NLP Computer%20Vision Recommenders Jupyter

Job-oriented portfolio showcasing practical implementations of Machine Learning & Deep Learning tasks with clear evaluation, model comparison, and reproducible experiments.
Includes classical ML pipelines, clustering + PCA, recommender systems, and deep learning for Computer Vision and NLP.


Project tags (keywords)

python machine-learning deep-learning ai data-science
numpy pandas matplotlib seaborn
scikit-learn svm random-forest feature-engineering
kmeans pca clustering
recommender-systems surprise svd svdpp nmf
tensorflow keras cnn transfer-learning vgg16 fashion-mnist
nlp imdb rnn lstm bilstm text-summarization nltk spacy


Why this repo

This repository demonstrates:

  • End-to-end ML workflow: data loading → preprocessing → training → evaluation → conclusions
  • Model comparison beyond accuracy: classification_report, confusion matrices, learning curves, cross-validation where applicable
  • Reproducibility: fixed seeds, consistent preprocessing, modular helper code
  • Engineering mindset: structured repo (notebooks/ + src/), clean code style, readable experiments

Highlights

Classical ML: Human Activity Recognition

  • 05_human_activity_recognition_svm_rf.ipynb
    • Time-domain feature engineering
    • SVM vs RandomForest
    • classification_report + confusion matrix comparison

Clustering: KMeans + PCA visualization

  • 06_kmeans_clustering_pca_visualization.ipynb
    • Elbow method
    • PCA to 2D for high-dimensional dataset
    • Cluster visualization & interpretation

Recommender Systems: Matrix Factorization

  • 07_recommender_systems_matrix_factorization.ipynb
    • Surprise: SVD / SVD++ / NMF
    • Cross-validation and best model selection (RMSE/MAE)
    • Simple Top-N recommendation demo

Computer Vision: Fashion-MNIST (Keras)

  • 08_fashion_mnist_mlp_baseline.ipynb — Dense MLP baseline (target ≥ ~0.91)
  • 09_fashion_mnist_cnn_architecture_comparison.ipynb — CNN architecture + comparison to MLP
  • 10_fashion_mnist_transfer_learning_vgg16.ipynb — Transfer learning VGG16 (feature extraction + fine-tuning)

NLP: IMDB Sentiment + Summarization (NLTK & spaCy)

  • 11_imdb_sentiment_rnn_lstm_bilstm.ipynb
    • SimpleRNN vs LSTM vs BiLSTM (+ optional deep variant)
    • classification report + training diagnostics
  • 12_text_summarization_nltk_spacy.ipynb
    • Extractive summarization using NLTK and spaCy
    • Sentence scoring with word frequencies + heapq.nlargest

Tech stack

Core: Python 3.10+, NumPy, Pandas
Visualization: Matplotlib, Seaborn
ML: scikit-learn
Deep Learning: TensorFlow / Keras
NLP: NLTK, spaCy
Recommenders: scikit-surprise

Links:


Setup

Option A — Local (pip)

python -m venv .venv
# Windows: .venv\Scripts\activate
# macOS/Linux: source .venv/bin/activate
pip install -r requirements.txt
jupyter notebook

About

Applied Machine Learning & Deep Learning models across NLP, Computer Vision, Recommender Systems and Classical ML

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published