Job-oriented portfolio showcasing practical implementations of Machine Learning & Deep Learning tasks with clear evaluation, model comparison, and reproducible experiments.
Includes classical ML pipelines, clustering + PCA, recommender systems, and deep learning for Computer Vision and NLP.
python machine-learning deep-learning ai data-science
numpy pandas matplotlib seaborn
scikit-learn svm random-forest feature-engineering
kmeans pca clustering
recommender-systems surprise svd svdpp nmf
tensorflow keras cnn transfer-learning vgg16 fashion-mnist
nlp imdb rnn lstm bilstm text-summarization nltk spacy
This repository demonstrates:
- End-to-end ML workflow: data loading → preprocessing → training → evaluation → conclusions
- Model comparison beyond accuracy:
classification_report, confusion matrices, learning curves, cross-validation where applicable - Reproducibility: fixed seeds, consistent preprocessing, modular helper code
- Engineering mindset: structured repo (
notebooks/+src/), clean code style, readable experiments
05_human_activity_recognition_svm_rf.ipynb- Time-domain feature engineering
- SVM vs RandomForest
classification_report+ confusion matrix comparison
06_kmeans_clustering_pca_visualization.ipynb- Elbow method
- PCA to 2D for high-dimensional dataset
- Cluster visualization & interpretation
07_recommender_systems_matrix_factorization.ipynb- Surprise: SVD / SVD++ / NMF
- Cross-validation and best model selection (RMSE/MAE)
- Simple Top-N recommendation demo
08_fashion_mnist_mlp_baseline.ipynb— Dense MLP baseline (target ≥ ~0.91)09_fashion_mnist_cnn_architecture_comparison.ipynb— CNN architecture + comparison to MLP10_fashion_mnist_transfer_learning_vgg16.ipynb— Transfer learning VGG16 (feature extraction + fine-tuning)
11_imdb_sentiment_rnn_lstm_bilstm.ipynb- SimpleRNN vs LSTM vs BiLSTM (+ optional deep variant)
- classification report + training diagnostics
12_text_summarization_nltk_spacy.ipynb- Extractive summarization using NLTK and spaCy
- Sentence scoring with word frequencies +
heapq.nlargest
Core: Python 3.10+, NumPy, Pandas
Visualization: Matplotlib, Seaborn
ML: scikit-learn
Deep Learning: TensorFlow / Keras
NLP: NLTK, spaCy
Recommenders: scikit-surprise
Links:
- NumPy: https://numpy.org/
- Pandas: https://pandas.pydata.org/
- scikit-learn: https://scikit-learn.org/stable/
- TensorFlow: https://www.tensorflow.org/
- Keras: https://keras.io/
- NLTK: https://www.nltk.org/
- spaCy: https://spacy.io/
- Surprise: https://surpriselib.com/
python -m venv .venv
# Windows: .venv\Scripts\activate
# macOS/Linux: source .venv/bin/activate
pip install -r requirements.txt
jupyter notebook