feat_fns.py: Utility functions used throughout the codebase.generate_feat_seqs.py: Generates datapoints corresponding to given features.
pipeline.py: Implements SAE-Track by training a sequence of SAEs usingsparse_autoencoder_trainer.py.sparse_autoencoder_trainer.py: Trains individual SAEs on model activations.
vis_in_one.py: Feature panel visualization, including semantic information.
umap_vis.py: UMAP visualization.act_dynamics.py: Computes activation space progress measures.feat_dynamics.py: Computes feature space progress measures.w_no_jaccard.py: Uses Jaccard similarity for progress measure.wjaccard_dynamics.py: Uses weighted Jaccard similarity for progress measure.
cos_analysis_feature_centric.py: Cosine similarity analysis focusing on features.cos_plot_ckpt.py: Cosine similarity visualization across checkpoints.traj.py: Analyzes trajectories of decoder vectors (W_dec).