Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 63 additions & 10 deletions GPy/models/gp_coregionalized_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from .. import likelihoods
from .. import kern
from .. import util
from paramz import ObsAr


class GPCoregionalizedRegression(GP):
"""
Expand All @@ -28,19 +30,70 @@ class GPCoregionalizedRegression(GP):
:param kernel_name: name of the kernel
:type kernel_name: string
"""
def __init__(self, X_list, Y_list, kernel=None, likelihoods_list=None, name='GPCR',W_rank=1,kernel_name='coreg'):

#Input and Output
X,Y,self.output_index = util.multioutput.build_XY(X_list,Y_list)
def __init__(
self,
X_list,
Y_list,
kernel=None,
normalizer=None,
likelihoods_list=None,
name="GPCR",
W_rank=1,
kernel_name="coreg",
):

# Input and Output
X, Y, self.output_index = util.multioutput.build_XY(X_list, Y_list)
Ny = len(Y_list)

#Kernel
# Kernel
if kernel is None:
kernel = kern.RBF(X.shape[1]-1)

kernel = util.multioutput.ICM(input_dim=X.shape[1]-1, num_outputs=Ny, kernel=kernel, W_rank=W_rank,name=kernel_name)
kernel = kern.RBF(X.shape[1] - 1)

kernel = util.multioutput.ICM(
input_dim=X.shape[1] - 1,
num_outputs=Ny,
kernel=kernel,
W_rank=W_rank,
name=kernel_name,
)

# Likelihood
likelihood = util.multioutput.build_likelihood(
Y_list, self.output_index, likelihoods_list
)

super(GPCoregionalizedRegression, self).__init__(
X,
Y,
kernel,
likelihood,
Y_metadata={"output_index": self.output_index},
normalizer=normalizer,
)

def set_XY(self, X=None, Y=None):
if isinstance(X, list):
X, _, self.output_index = util.multioutput.build_XY(X, None)
if isinstance(Y, list):
_, Y, self.output_index = util.multioutput.build_XY(Y, Y)

self.update_model(False)
if Y is not None:
if self.normalizer is not None:
self.normalizer.scale_by(Y)
self.Y_normalized = ObsAr(self.normalizer.normalize(Y))
self.Y = Y
else:
self.Y = ObsAr(Y)
self.Y_normalized = self.Y
if X is not None:
self.X = ObsAr(X)

#Likelihood
likelihood = util.multioutput.build_likelihood(Y_list,self.output_index,likelihoods_list)
self.Y_metadata = {
"output_index": self.output_index,
"trials": np.ones(self.output_index.shape),
}

super(GPCoregionalizedRegression, self).__init__(X,Y,kernel,likelihood, Y_metadata={'output_index':self.output_index})
self.update_model(True)