Sample-efficient Sample-based Quantum Diagonalization (SQD) with feed-forward Neural Quantum State (NQS) samplers for small molecules under 12-bit encodings.
NQS training quality and SQD accuracy are negatively correlated.
In 12-bit systems (LiH, H4, H6), uniform random sampling (Baseline) consistently outperforms well-trained NQS samplers. This counterintuitive result suggests that SQD success depends on sample diversity rather than sample quality.
| Molecule | Method | SQD Error (mHa) | Conservation Ratio |
|---|---|---|---|
| LiH | NQS | 312.18 | 6.5% |
| LiH | Baseline | 65.38 | 5.1% |
| H4 | NQS | 156.07 | 35.7% |
| H4 | Baseline | ~0 | 14.5% |
| H6 | NQS | 385.77 | 25.1% |
| H6 | Baseline | ~0 | 9.8% |
- Total experiments: 1788 runs across LiH, H4, H6
- Systems tested: 8-12 spin orbitals, 4-6 electrons
- Parameters scanned: epochs (50-500), samples (100-5000), bond lengths (1.0-3.0 A)
Full results: results/figures/experiment_report.md
# Create virtual environment
uv venv && source .venv/bin/activate
# Install dependencies
uv pip install -e .
# Run full experiment pipeline
python scripts/run_full_research_plan.py
# Generate visualizations
python scripts/generate_phase_diagram.py
python scripts/generate_missing_figures.pysqd-nqs-12bit/
├── src/
│ ├── nqs_models/ # FFNN NQS, VMC training, GPU optimization
│ ├── sqd_interface/ # PySCF integrals, qiskit-addon-sqd wrapper
│ └── experiments/ # Experiment runners
├── scripts/
│ ├── run_full_research_plan.py # Main experiment runner
│ ├── generate_phase_diagram.py # Visualization
│ └── hackmd_sync.py # HackMD integration
├── results/
│ ├── phase_diagram/ # Raw JSON data
│ └── figures/ # Generated plots and reports
├── DEVELOPMENT_PLAN.md # Research progress tracking
└── CLAUDE.md # Project guide for Claude Code
| Figure | Description |
|---|---|
vmc_vs_sqd_scatter.png |
VMC vs SQD error (negative correlation) |
training_analysis.png |
Training epochs effect on accuracy |
sample_efficiency.png |
Sample count vs SQD error |
hchain_scaling.png |
H4/H6 system scaling |
conservation_distributions.png |
Conservation ratio histograms |
heatmap_analysis.png |
Multi-parameter heatmaps |
- Python 3.12+
- PyTorch 2.5+ (CUDA 12.1)
- qiskit-addon-sqd
- PySCF
- NVIDIA RTX 4090 (recommended)