Skip to content

This project provides tools to simulate and visualize the optimal placement of Electric Vehicle (EV) chargers in Berlin using NSGA-II optimization. Tech: Python, Geopandas, Pymoo, Folium

Notifications You must be signed in to change notification settings

Prof-it/geo-spatial-Berlin-EVC-placement

Repository files navigation

Berlin EV Charger Placement Simulation

This project provides tools to simulate and visualize the optimal placement of Electric Vehicle (EV) chargers in Berlin using NSGA-II optimization.

Project Structure

  • download_data.py: Downloads the latest charger location data from Berlin's WFS service.
  • generate_results.py: Runs the NSGA-II optimization to determine optimal charger allocations.
  • visualize.py: Generates heatmaps and plots based on the simulation results.
  • requirements.txt: List of Python dependencies.

Setup

  1. Install Dependencies: Ensure you have Python installed. Then run:
    pip install -r requirements.txt

Usage

1. Download Data

Download the latest charger locations:

python download_data.py

This will create chargers_locations.geojson.

2. Run Simulation (Optional)

Note: This step requires the raw BNetzA CSV file (e.g., Ladesaeulenregister_BNetzA_*.csv) to be present in the directory.

Run the optimization algorithm:

python generate_results.py

This will generate nsga2_all_k_results_GENERATED.csv.

3. Visualize Results

Generate charts and heatmaps using the existing results:

python visualize.py

This will create a simulation_outputs_final_geojson directory containing:

  • Heatmaps (.html)
  • Summary metrics (.csv)
  • Plots (.png)

Data Sources

About

This project provides tools to simulate and visualize the optimal placement of Electric Vehicle (EV) chargers in Berlin using NSGA-II optimization. Tech: Python, Geopandas, Pymoo, Folium

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages