The contents of this repository are as follows:
We used only the first 800 images of DIV2K dataset to train our model.
The test set including Set5, Set14, B100, Urban100, Manga109, which can be downloaded from here.[Password:8888]
The code and datasets need satisfy the following structures:
├── DMNet # Train / Test Code
├── dataset # all datasets for this code
| └── DIV2K_decoded # train datasets with npy format
| | └── DIV2K_train_HR
| | └── DIV2K_train_LR_bicubic
| └── benchmark # test datasets with png format
| | └── Set5
| | └── Set14
| | └── B100
| | └── Urban100
| | └── Manga109
─────────────────
Our SR Results can be downloaded from here.
Pretrained models can be found in experiments.
- Python >= 3.7
- torch >= 1.2
- einops
- timm
- tqdm
- imageio
# For X2
python3 main.py --model edsr_fre --scale 2 --patch_size 96 --extra_loss --save Offical_EDSRfrex2
# For X3
python3 main.py --model edsr_fre --scale 3 --patch_size 144 --extra_loss --save Offical_EDSRfrex3
# For X4
python3 main.py --model edsr_fre --scale 4 --patch_size 192 --extra_loss --save Offical_EDSRfrex4
# For X2
python3 main.py --model edsr_fre --scale 2 --data_test Set5+Set14+B100+Urban100+Manga109 --save_results --save test_results/EDSRfrex2_results --pre_train ../experiment/Offical_EDSRfrex2/edsr_fre_x2.pt
# For X3
python3 main.py --model edsr_fre --scale 3 --data_test Set5+Set14+B100+Urban100+Manga109 --save_results --save test_results/EDSRfrex2_results --pre_train ../experiment/Offical_EDSRfrex3/edsr_fre_x3.pt
# For X4
python3 main.py --model edsr_fre --scale 4 --data_test Set5+Set14+B100+Urban100+Manga109 --save_results --save test_results/EDSRfrex2_results --pre_train ../experiment/Offical_EDSRfrex4/edsr_fre_x4.pt
If this work is helpful for your research, please consider citing the following BibTeX entry.
@article{li2026fouriersr,
title={FourierSR: A Fourier Token-based Plugin for Efficient Image Super-Resolution},
author={Li, Wenjie and Guo, Heng and Hou, Yuefeng and Ma, Zhanyu},
journal={IEEE Transactions on Image Processing},
year={2026}
}
The foundation for the training process is profited from the outstanding contribution of EDSR.
This repo is currently maintained by [email protected] and is for academic research use only.