Code for the paper On the Generalization of Representation Uncertainty in Earth Observation (ICCV 2025)
This is the repository for the paper On the Generalization of Representation Uncertainty in Earth Observation. It builds on and extends Pretrained Visual Uncertainties, GitHub repo.
The documentation of this repo will be continuously updated.
conda create env -f environment.yml
main.py is the main driver of the project, aggregating the options selected in configs, depending on the task: i.e
- Train uncertainties
- Inference
- Save features (caching)
To initiate an experiment execute python main.py.
The training/inference dataset can be selected by modifying the configs/configs.json "dataset" field.
Training hyperparameters can be modified in configs/train/train_configs.json and inference options in configs/inference/inference_configs.json.
Overal the configuration structure is defined as:
configs
├── configs.json
├── data
│ ├── data_configs.json
│ └── webdataset_configs.json
├── inference
│ └── inference_configs.json
├── stats
│ └── stats.json
└── train
└── train_configs.json
| Dataset | Bands | ViT-Tiny | ViT-Small | ViT-Base | ViT-Large |
|---|---|---|---|---|---|
| BigEarthNet | RGB | Download | Download | Download | Download |
| BigEarthNet5 | RGB | Download | Download | Download | Download |
| BigEarthNet-SAR | SAR | Download | Download | Download | Download |
| BigEarthNet-MS | Multispectral | Download | Download | Download | Download |
| Flair | RGB | Download | Download | Download | Download |
ImageNet pretrained models can be found in this repo.
wget -O bigearthnet_vit_tiny.pth "https://www.dropbox.com/scl/fi/c6j6wa8po22eutyv2w0cd/vit_tiny.pth?rlkey=94u4xcnv1xme2ns93xe7fqor3&st=20uednd6&dl=0"
If you use our work, please cite:
@misc{kondylatos2025generalizationrepresentationuncertaintyearth,
title={On the Generalization of Representation Uncertainty in Earth Observation},
author={Spyros Kondylatos and Nikolaos Ioannis Bountos and Dimitrios Michail and Xiao Xiang Zhu and Gustau Camps-Valls and Ioannis Papoutsis},
year={2025},
eprint={2503.07082},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.07082},
}