Skip to content

Orion-AI-Lab/EOUncertaintyGeneralization

Repository files navigation

📖 Table of Contents

About

This is the repository for the paper On the Generalization of Representation Uncertainty in Earth Observation. It builds on and extends Pretrained Visual Uncertainties, GitHub repo.

The documentation of this repo will be continuously updated.

Installation

conda create env -f environment.yml

Usage

main.py is the main driver of the project, aggregating the options selected in configs, depending on the task: i.e - Train uncertainties - Inference - Save features (caching)

To initiate an experiment execute python main.py.

The training/inference dataset can be selected by modifying the configs/configs.json "dataset" field.

Training hyperparameters can be modified in configs/train/train_configs.json and inference options in configs/inference/inference_configs.json.

Overal the configuration structure is defined as:

configs
├── configs.json
├── data
│   ├── data_configs.json
│   └── webdataset_configs.json
├── inference
│   └── inference_configs.json
├── stats
│   └── stats.json
└── train
    └── train_configs.json

Pretrained uncertainty checkpoints

Dataset Bands ViT-Tiny ViT-Small ViT-Base ViT-Large
BigEarthNet RGB Download Download Download Download
BigEarthNet5 RGB Download Download Download Download
BigEarthNet-SAR SAR Download Download Download Download
BigEarthNet-MS Multispectral Download Download Download Download
Flair RGB Download Download Download Download

ImageNet pretrained models can be found in this repo.

Download example

wget -O bigearthnet_vit_tiny.pth "https://www.dropbox.com/scl/fi/c6j6wa8po22eutyv2w0cd/vit_tiny.pth?rlkey=94u4xcnv1xme2ns93xe7fqor3&st=20uednd6&dl=0"

Citation

If you use our work, please cite:

@misc{kondylatos2025generalizationrepresentationuncertaintyearth,
      title={On the Generalization of Representation Uncertainty in Earth Observation}, 
      author={Spyros Kondylatos and Nikolaos Ioannis Bountos and Dimitrios Michail and Xiao Xiang Zhu and Gustau Camps-Valls and Ioannis Papoutsis},
      year={2025},
      eprint={2503.07082},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.07082}, 
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published